24 research outputs found

    Development of a hard X-ray delay line for X-ray photon correlation spectroscopy and jitter-free pump–probe experiments at X-ray free-electron laser sources

    Get PDF
    A prototype device capable of splitting an X-ray pulse into two adjustable fractions, delaying one of them with the aim of performing split pulse X-ray photon correlation spectroscopy and pump–probe type studies was designed and manufactured. Time delays up to 2.95 ns have been demonstrated. The achieved contrast values of 56% indicate a feasibility of performing coherence-based experiments with the delay line

    The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source

    Get PDF
    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milli-seconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. A description of theinstrument capabilities and recent achievements is presented

    The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    Get PDF
    This content may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This material originally appeared in Review of Scientific Instruments 83, 043107 (2012) and may be found at https://doi.org/10.1063/1.3698294.The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480–2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser

    Probing Electronic Strain Generation by Separated Electron-Hole Pairs Using Time-Resolved X-ray Scattering

    No full text
    Photogeneration of excess charge carriers in semiconductors produces electronic strain. Under transient conditions, electron-hole pairs may be separated across a potential barrier. Using time-resolved X-ray diffraction measurements across an intrinsic AlGaAs/n-doped GaAs interface, we find that the electronic strain is only produced by holes, and that electrons are not directly observable by strain measurements. The presence of photoinduced charge carriers in the n-doped GaAs is indirectly confirmed by delayed heat generation via recombination

    Special Issue on Trends in Sub-Microsecond X-ray Science with Coherent Beams

    No full text
    Large increases in synchrotron brightness have brought notable breakthroughs in measurement techniques that exploit transverse coherence, such as X-ray photon correlation spectroscopy (XPCS), coherent diffraction imaging (CDI), diffraction microscopy, and ptychography [...

    Exploring TEM Coherence Properties via Speckle Contrast Analysis in Coherent Electron Scattering of Amorphous Material

    No full text
    We investigate the coherence properties of a transmission electron microscope by analyzing nano-diffraction speckles originating from bulk metallic glass. The spatial correlation function of the coherent diffraction patterns, obtained in the transmission geometry, reveals the highly coherent nature of the electron probe beam and its spatial dimension incident on the sample. Quantitative agreement between the measured speckle contrast and an analytical model yields estimates for the transverse and longitudinal coherence lengths of the source. We also demonstrate that the coherence can be controlled by changing the beam convergence angle. Our findings underscore the preservation of electron beam coherence throughout the electron optics, as evidenced by the high-contrast speckles observed in the scattering patterns of the amorphous system. This study paves the way for the application of advanced coherent diffraction methodologies to investigate local structures and dynamics occurring at atomic-length scales across a diverse range of materials

    Towards a Counting Point Detector for Nanosecond Coherent X-ray Science

    No full text
    We present the technical realization of a high-speed hard X-ray single-photon counting-detection scheme based on a commercial avalanche silicon photodiode and high-speed oscilloscope. The development is motivated by the need to perform pulse-resolved photon-correlation and pump-probe studies at synchrotron sources with densely packed pulse patterns that result in high repetition rate pulses on the order of hundreds of MHz. Commissioning experiments are performed at the 1C PAL-KRISS beamline at PLS-II of South Korea operating at a burst mode maximum repetition rate of 500 MHz. In such a high count-rate measurement, detector dead-time can lead to a distortion of counting statistics. We are able to model the counting behavior of our detector under these conditions with a detector dead-time comparable to time between X-ray pulses, implying that nanosecond X-ray photon correlation spectroscopy should be possible at diffraction-limited light sources

    Reduced Thermal Conductivity in Ultrafast Laser Heated Silicon Measured by Time-Resolved X-ray Diffraction

    No full text
    We investigate the effect of free carrier dynamics on heat transport in bulk crystalline Silicon following femtosecond optical excitation of varying fluences. By taking advantage of the dense 500 MHz standard fill pattern in the PLS-II storage ring, we perform high angular-resolution X-ray diffraction measurements on nanosecond-to-microsecond time-scales with femtometer spatial sensitivity. We find noticeably slowed lattice recovery at increasingly high excitation intensities. Modeling the temporal evolution of lattice displacements due to the migration of the near surface generated heat into the bulk requires reduced thermal diffusion coefficients. We attribute this pump-fluence dependent thermal transport behavior to two separate effects: first, the enhanced nonradiative recombination of free carriers, and, second, reduced size of the effective heat source in the material. These results demonstrate the capability of time-resolved X-ray scattering as an effective means to explore the connection between charge carrier dynamics and macroscopic transport properties
    corecore