1,109 research outputs found

    Nanoscale reaction vessels: Highly ordered nanocrystal arrays inside porous anodic alumina nanowells

    Get PDF
    Using an anodic alumina template as a nanoscale reaction vessel, the authors developed a simple and unique method to prepare highly ordered arrays of nanocrystals in isolated nanowells. The highly ordered arrays of nanoscale wells were fabricated by short anodization. After the nanoscale wells were filled with a precursor solution of NaCl by dewetting, the solvent of the precursor solution was evaporated, resulting in spontaneous formation of uniformly sized NaCl nanocrystals inside the nanoscale wells. The size of crystals could be easily adjusted by varying the concentration of the precursor solution and the size of nanoscale wells. This approach is simple and cost-effective, and it can fabricate nanocrystal arrays on substrates with high throughput. It can also be readily adapted to synthesize other types of high-density nanocrystal arrays on different substrates. © 2015 The Authorsopen0

    Geomagnetic field influences probabilistic abstract decision-making in humans

    Full text link
    To resolve disputes or determine the order of things, people commonly use binary choices such as tossing a coin, even though it is obscure whether the empirical probability equals to the theoretical probability. The geomagnetic field (GMF) is broadly applied as a sensory cue for various movements in many organisms including humans, although our understanding is limited. Here we reveal a GMF-modulated probabilistic abstract decision-making in humans and the underlying mechanism, exploiting the zero-sum binary stone choice of Go game as a proof-of-principle. The large-scale data analyses of professional Go matches and in situ stone choice games showed that the empirical probabilities of the stone selections were remarkably different from the theoretical probability. In laboratory experiments, experimental probability in the decision-making was significantly influenced by GMF conditions and specific magnetic resonance frequency. Time series and stepwise systematic analyses pinpointed the intentionally uncontrollable decision-making as a primary modulating target. Notably, the continuum of GMF lines and anisotropic magnetic interplay between players were crucial to influence the magnetic field resonance-mediated abstract decision-making. Our findings provide unique insights into the impact of sensing GMF in decision-makings at tipping points and the quantum mechanical mechanism for manifesting the gap between theoretical and empirical probability in 3-dimensional living space.Comment: 32 pages, 5 figures, 4 supplementary figures, 2 supplementary tables, and separate 15 ancillary file

    Chronicle of a Soil Bacterium: Paenibacillus polymyxa E681 as a Tiny Guardian of Plant and Human Health

    Get PDF
    The Gram-positive rhizosphere bacterium Paenibacillus polymyxa promotes plant growth and produces various antibiotics. Herein, we review research on this species over the past two and a half decades, and focus on the mechanisms of P. polymyxa strain E681, isolated from barley roots in the South Korea in 1995. Strain E681 has outstanding growth-promoting effects on barley, cucumber, pepper, sesame, and Arabidopsis thaliana and produces antimicrobial compounds that protect plants against pathogenic fungi, oomycetes, and bacteria. Induced systemic resistance elicited by treating seeds or roots with strain E681 is a possible mechanism for protecting systemic plant tissues from biotic and other environmental stresses. Genome sequencing has broadened our horizons for antibiotic development and other industrial applications beyond agricultural use. At least six gene clusters for the biosynthesis of antibiotics have been discovered, including polymyxin (pmx), which was recently re-instated as an antibiotic of last resort against Gram-negative drug-resistant bacteria. Three groups of antibiotic synthetases include the gene clusters that encode one for the non-ribosomal peptide polymyxin, fusaricidin, and tridecaptin, another for the lantibiotic paenilan, and the third for a polyketide. We successfully introduced the pmx gene cluster into the surrogate host Bacillus subtilis and created polymyxin derivatives by domain swapping. Furthermore, various E681 derivatives, including a high fusaricidin producer and strains lacking multi-antibiotics production, have been constructed by random mutagenesis and genome engineering. Thus, E681 is an important bacterium that contributes to both plant and human health

    Evaluation of the added mass for a spheroid-type unmanned underwater vehicle by vertical planar motion mechanism test

    Get PDF
    ABSTRACTThis paper shows added mass and inertia can be acquired from the pure heaving motion and pure pitching motion respectively. A Vertical Planar Motion Mechanism (VPMM) test for the spheroid-type Unmanned Underwater Vehicle (UUV) was compared with a theoretical calculation and Computational Fluid Dynamics (CFD) analysis in this paper. The VPMM test has been carried out at a towing tank with specially manufactured equipment. The linear equations of motion on the vertical plane were considered for theoretical calculation, and CFD results were obtained by commercial CFD package. The VPMM test results show good agreement with theoretical calculations and the CFD results, so that the applicability of the VPMM equipment for an underwater vehicle can be verified with a sufficient accuracy

    Activation of Protein Kinase G After Repeated Cocaine Administration Is Necessary for the Phosphorylation of α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor GluA1 at Serine 831 in the Rat Nucleus Accumbens

    Get PDF
    Phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the striatum plays a crucial role in regulating the receptor-coupled signaling cascades leading to behavioral changes associated with psychostimulant exposure. The present study determined if activation of protein kinase G (PKG) contributes to the phosphorylation of AMPA receptor GluA1 subunit at the position of serine 831 (GluA1-S831) in the rat nucleus accumbens (NAc) after repeated cocaine administration. The results demonstrated that repeated intraperitoneal (i.p.) injections of cocaine (20 mg/kg) once a day for seven consecutive days significantly increased the level of phosphorylated (p)GluA1-S831. This increase was decreased by the intra-NAc infusion of either the cyclic guanosine monophosphate (cGMP) analog, Rp-8-Br-PET-cGMPS (5 nmol/1 μL), or the PKG inhibitor, KT5823 (2 nmol/1 μL). Repeated cocaine administration increased PKG binding activity to GluA1. This increase in GluA1-S831 phosphorylation after repeated cocaine administration was decreased by the intra-NAc infusion of the synthetic peptide (Tat-tagged interfering peptide (Tat-GluA1-i)), that interferes with the binding of PKG to GluA1. Intra-NAc infusion of the interfering peptide also reduced the repeated cocaine-induced increase in locomotor activity. These findings suggest that activated PKG, after repeated exposure to cocaine, binds to AMPA receptor GluA1 and is required for the phosphorylation of S831, contributing to behavioral changes

    Copper Bottom-Up Filling by Electroplating Without any Additives on Patterned Wafer

    Get PDF
    In conventional Cu electroplating, various additives are used to fill pattern without defects in patterned wafers. Pulse plating and electrochemical oxidation were used to deposit Cu without any additives. Defects such as voids and seams were generated if only pulse plating was carried out. Electrochemical oxidation was performed to remove Cu metal containing defects and to remain Cu species only at the bottom part of the trenches. Then, defect free Cu films could be obtained when Cu electroplating without additives was performed on the etched substrate.This work was supported by KOSEF through the Research Center for Energy Conversion and Storage RCECS , also by the Institute of Chemical Processes ICP in Seoul National University
    corecore