32 research outputs found

    Improving tribological and anti-bacterial properties of titanium external fixation pins through surface ceramic conversion

    Get PDF
    In this study, an advanced ceramic conversion surface engineering technology has been applied for the first time to self-drilling Ti6Al4V external fixation pins to improve their performance in terms of biomechanical, bio-tribological and antibacterial properties. Systematic characterisation of the ceramic conversion treated Ti pins was carried out using Scanning electron microscope, X-ray diffraction, Glow-discharge optical emission spectroscopy, nano- and micro-indentation and scratching; the biomechanical and bio-tribological properties of the surface engineered Ti pins were evaluated by insertion into high density bone simulation material; and the antibacterial behaviour was assessed with Staphylococcus aureus NCTC 6571. The experimental results have demonstrated that the surfaces of Ti6Al4V external fixation pins were successfully converted into a TiO(2) rutile layer (~2 μm in thickness) supported by an oxygen hardened case (~15 μm in thickness) with very good bonding due to the in-situ conversion nature. The maximum insertion force and temperature were reduced from 192N and 31.2 °C when using the untreated pins to 182N and 26.1 °C when the ceramic conversion treated pins were tested. This is mainly due to the significantly increased hardness (more than three times) and the effectively enhanced wear resistance of the cutting edge of the self-drilling Ti pins following the ceramic conversion treatment. The antibacterial tests also revealed that there was a significantly reduced number of bacteria isolated from the ceramic conversion treated pins compared to the untreated pins of around 50 % after 20 h incubation, P < 0.01 (0.0024). The results reported are encouraging and could pave the way towards high-performance anti-bacterial titanium external fixation pins with reduced pin-track infection and pin loosing

    The machinability characteristics of multidirectional CFRP composites using high-performance wire EDM electrodes

    No full text
    Due to the abrasive nature of the material, the conventional machining of CFRP composites is typically characterised by high mechanical forces and poor tool life, which can have a detrimental effect on workpiece surface quality, mechanical properties, dimensional accuracy, and, ultimately, functional performance. The present paper details an experimental investigation to assess the feasibility of wire electrical discharge machining (WEDM) as an alternative for cutting multidirectional CFRP composite laminates using high-performance wire electrodes. A full factorial experimental array comprising a total of 8 tests was employed to evaluate the effect of varying ignition current (3 and 5 A), pulse-off time (8 and 10 µs), and wire type (Topas Plus D and Compeed) on material removal rate (MRR), kerf width, workpiece surface roughness, and surface damage. The Compeed wire achieved a lower MRR of up to ~40% compared with the Topas wire when operating at comparable cutting parameters, despite having a higher electrical conductivity. Statistical investigation involving analysis of variance (ANOVA) showed that the pulse-off time was the only significant factor impacting the material removal rate, with a percentage contribution ratio of 67.76%. In terms of cut accuracy and surface quality, machining with the Compeed wire resulted in marginally wider kerfs (~8%) and a higher workpiece surface roughness (~11%) compared to the Topas wire, with maximum recorded values of 374.38 µm and 27.53 µm Sa, respectively. Micrographs from scanning electron microscopy revealed the presence of considerable fibre fragments, voids, and adhered re-solidified matrix material on the machined surfaces, which was likely due to the thermal nature of the WEDM process. The research demonstrated the viability of WEDM for cutting relatively thick (9 mm) multidirectional CFRP laminates without the need for employing conductive assistive electrodes. The advanced coated wire electrodes used in combination with higher ignition current and lower pulse-off time levels resulted in an increased MRR of up to ~15 mm3/min

    Workpiece surface integrity and productivity when cutting CFRP and GFRP composites using a CO2 laser

    No full text
    Following a brief literature review, results from tests involving laser cutting of carbon and glass fibre reinforced plastic (CFRP and GFRP) composites are presented. The influence of cutting speed, laser beam power and gas pressure on material removal rate (MRR), kerf width and workpiece surface integrity were investigated. Productivity was up to ~100% higher when cutting GFRP compared to CFRP, with a maximum MRR of ~8 cm3/min achieved when operating at a cutting speed of 1750 mm/min, 2500 W beam power and gas pressure of 5 bar. Charring and melting of the matrix phase was observed in both materials and similarly surface voids/cavities were evident on the CFRP and GFRP samples. Three-dimensional topographic maps also revealed the presence of grooves on the latter, which would explain the significantly higher surface roughness levels obtained (up to ~13µm Ra). Heat affected zones were visible in the majority of CFRP specimens assessed which extended to a depth of ~1.5mm (depending on the fibre orientation) while only minor damage in terms of fibre protrusion was apparent in corresponding GFRP workpieces. Kerf widths decreased with increasing cutting speed and were typically over 2 times larger in the GFRP material
    corecore