10 research outputs found

    Synthesis Of Netilmicin And Apramycin Derivatives For The Treatment Of Multidrug-Resistant Infectious Diseases

    Get PDF
    The ever-growing bacterial resistance to existing antibiotics is alarming to humanity. Many researchers decided to revisit aminoglycosides with renewed emphasis on chemical modification as they have long been used as highly potent antibiotics for treating severe bacterial infections. The bactericidal effect of aminoglycosides is mainly due to protein synthesis inhibition by binding to the A-site of the bacterial ribosomes. However, the high potency and the broad spectrum of aminoglycosides has been outweighed by their side effects, especially ototoxicity, and by the resistance of pathogens. The goal of this research was the modification of existing aminoglycosides to develop derivatives which are less toxic and that evade resistance. The chapters in the thesis discuss the chemical synthesis as well as the biological evaluation of the newly synthesized analogs. This study has focused on the modification of aminoglycosides netilmicin and apramycin. Chapter one introduces the MDR bacterial infection problem and its influence. Chapter one also introduces the aminoglycosides elaborating their history, classifications, and their mechanism of action. The resistance mechanisms against aminoglycosides and their adverse effects, as well as the ways to prevent them are briefly explained. Chapter two discusses modifications of netilmicin at the 4’-position conducted with a view to reducing the ototoxicity but not the antibiotic activity, as was previously done in the 4,5-series with paromomycin. The antibacterial activity and antiribosomal activity of the six netilmicin derivatives synthesized were determined. The 4’-position is more sensitive to modification in 4,6-series than in the 4,5-series to the extent that such modifications are ineffective. Chapter two also highlights the use of phenyl triazenes as selective protecting groups for secondary amines in the presence of primary amines. Several polyamine substrates were selectively protected as phenyl triazenes, and primary amines were subsequently protected as azides, benzyloxy carbamates, or fluorenylmethyl carbamates. Phenyl triazenes enabled the synthesis of plazomicin, an aminoglycoside in phase III clinical trials, in fewer steps and higher yield than previously reported. Chapter three describes derivatization and modification of apramycin at the 5-position. The influence of these modifications was investigated using cell-free translation assays and antibacterial assays. An apramycin-paromomycin hybrid was synthesized with the aim of combining paromomycin’s high activity with apramycin’s low ototoxicity. Eighteen compounds were synthesized with modifications mainly at the 5-position leading to the development of a potent derivative that was more active than apramycin against all bacterial strains tested and which also showed better ribosomal selectivity. This investigation affords proof of concept for the development of more potent and selective aminoglycosides in the apramycin class

    Selective Protection of Secondary Amines as the <i>N</i>‑Phenyltriazenes. Application to Aminoglycoside Antibiotics

    No full text
    Selective protection of secondary amines as triazenes in the presence of multiple primary amines is demonstrated, with subsequent protection of the primary amines as either azides or carbamates in the same pot. Aminoglycoside antibiotic examples reveal broad functional group compatibility. The triazene group is removed with trifluoroacetic acid and, because of the low barrier to rotation, affords sharp <sup>1</sup>H NMR spectra at room temperature

    Synthesis, ribosomal selectivity, and antibacterial activity of netilmicin 4'-derivatives

    Full text link
    Halogenation of a suitably protected netilmicin derivative enables preparation of 4'-chloro-, bromo-, and iodo derivatives of netilmicin after deprotection. Suzuki coupling of a protected 4'-bromo derivative with phenylboronic acid or butyltrifluoroborate affords the corresponding 4'-phenyl and 4'-butyl derivatives of netilmicin. Sulfenylation of suitably protected netilmicin derivative with ethanesulfenyl chloride followed by deprotection affords 4'-ethylsulfanylnetilmicin. All netilmicin 4'-derivatives displayed reduced levels of inhibition for prokaryotic ribosomes and reduced antibacterial activity against typical Gram-positive and Gram-negative strains. None of the derivatives displayed enhanced target selectivity

    Novel sofosbuvir derivatives against SARS-CoV-2 RNA-dependent RNA polymerase: an in silico perspective

    No full text
    Abstract The human coronavirus, SARS-CoV-2, had a negative impact on both the economy and human health, and the emerging resistant variants are an ongoing threat. One essential protein to target to prevent virus replication is the viral RNA-dependent RNA polymerase (RdRp). Sofosbuvir, a uridine nucleotide analog that potently inhibits viral polymerase, has been found to help treat SARS-CoV-2 patients. This work combines molecular docking and dynamics simulation (MDS) to test 14 sofosbuvir-based modifications against SARS-CoV-2 RdRp. The results reveal comparable (slightly better) average binding affinity of five modifications (compounds 3, 4, 11, 12, and 14) to the parent molecule, sofosbuvir. Compounds 3 and 4 show the best average binding affinities against SARS-CoV-2 RdRp (− 16.28 ± 5.69 and − 16.25 ± 5.78 kcal/mol average binding energy compared to − 16.20 ± 6.35 kcal/mol for sofosbuvir) calculated by Molecular Mechanics Generalized Born Surface Area (MM-GBSA) after MDS. The present study proposes compounds 3 and 4 as potential SARS-CoV-2 RdRp blockers, although this has yet to be proven experimentally

    Design and synthesis of novel quinazolinone-based derivatives as EGFR inhibitors with antitumor activity

    No full text
    Nineteen new quinazolin-4(3H)-one derivatives 3a–g and 6a–l were designed and synthesised to inhibit EGFR. The antiproliferative activity of the synthesised compounds was tested in vitro against 60 different human cell lines. The most potent compound 6d displayed superior sub-micromolar antiproliferative activity towards NSC lung cancer cell line NCI-H460 with GI50 = 0.789 µM. It also showed potent cytostatic activity against 40 different cancer cell lines (TGI range: 2.59–9.55 µM). Compound 6d potently inhibited EGFR with IC50 = 0.069 ± 0.004 µM in comparison to erlotinib with IC50 value of 0.045 ± 0.003 µM. Compound 6d showed 16.74-fold increase in total apoptosis and caused cell cycle arrest at G1/S phase in breast cancer HS 578T cell line. Moreover, the most potent derivatives were docked into the EGFR active site to determine their binding mode and confirm their ability to satisfy the pharmacophoric features required for EGFR inhibition.</p

    Effects of the 1- N-(4-Amino-2 S-hydroxybutyryl) and 6'- N-(2-Hydroxyethyl) Substituents on Ribosomal Selectivity, Cochleotoxicity, and Antibacterial Activity in the Sisomicin Class of Aminoglycoside Antibiotics

    Full text link
    Syntheses of the 6'- N-(2-hydroxyethyl) and 1- N-(4-amino-2 S-hydroxybutyryl) derivatives of the 4,6-aminoglycoside sisomicin and that of the doubly modified 1- N-(4-amino-2 S-hydroxybutyryl)-6'- N-(2-hydroxyethyl) derivative known as plazomicin are reported together with their antibacterial and antiribosomal activities and selectivities. The 6'- N-(2-hydroxyethyl) modification results in a moderate increase in prokaryotic/eukaryotic ribosomal selectivity, whereas the 1- N-(4-amino-2 S-hydroxybutyryl) modification has the opposite effect. When combined in plazomicin, the effects of the two groups on ribosomal selectivity cancel each other out, leading to the prediction that plazomicin will exhibit ototoxicity comparable to those of the parent and the current clinical aminoglycoside antibiotics gentamicin and tobramycin, as borne out by ex vivo studies with mouse cochlear explants. The 6'- N-(2-hydroxyethyl) modification restores antibacterial activity in the presence of the AAC(6') aminoglycoside-modifying enzymes, while the 1- N-(4-amino-2 S-hydroxybutyryl) modification overcomes resistance to the AAC(2') class but is still affected to some extent by the AAC(3) class. Neither modification is able to circumvent the ArmA ribosomal methyltransferase-induced aminoglycoside resistance. The use of phenyltriazenyl protection for the secondary amino group of sisomicin facilitates the synthesis of each derivative and their characterization through the provision of sharp NMR spectra for all intermediates

    Structure-Activity Relationships for 5'' Modifications of 4,5-Aminoglycoside Antibiotics

    Full text link
    Modification at the 5''-position of 4,5-disubstituted aminoglycoside antibiotics (AGAs) to circumvent inactivation by aminoglycoside modifying enzymes (AMEs) is well known. Such modifications, however, unpredictably impact activity and affect target selectivity thereby hindering drug development. A survey of 5''-modifications of the 4,5-AGAs and the related 5-O-furanosyl apramycin derivatives is presented. In the neomycin and the apralog series, all modifications were well-tolerated, but other 4,5-AGAs require a hydrogen bonding group at the 5''-position for maintenance of antibacterial activity. The 5''-amino modification resulted in parent-like activity, but reduced selectivity against the human cytosolic decoding A site rendering this modification unfavorable in paromomycin, propylamycin, and ribostamycin. Installation of a 5''-formamido group and, to a lesser degree, a 5''-ureido group resulted in parent-like activity without loss of selectivity. These lessons will aid the design of next-generation AGAs capable of circumventing AME action while maintaining high antibacterial activity and target selectivity. Keywords: aminoglycoside modifying enzymes; antibacterial; antiribosomal; ototoxicit

    Effects of the 1‑<i>N</i>‑(4-Amino‑2<i>S</i>‑hydroxybutyryl) and 6′‑<i>N</i>‑(2-Hydroxyethyl) Substituents on Ribosomal Selectivity, Cochleotoxicity, and Antibacterial Activity in the Sisomicin Class of Aminoglycoside Antibiotics

    No full text
    Syntheses of the 6′-<i>N</i>-(2-hydroxyethyl) and 1-<i>N</i>-(4-amino-2<i>S</i>-hydroxybutyryl) derivatives of the 4,6-aminoglycoside sisomicin and that of the doubly modified 1-<i>N</i>-(4-amino-2<i>S</i>-hydroxybutyryl)-6′-<i>N</i>-(2-hydroxyethyl) derivative known as plazomicin are reported together with their antibacterial and antiribosomal activities and selectivities. The 6′-<i>N</i>-(2-hydroxyethyl) modification results in a moderate increase in prokaryotic/eukaryotic ribosomal selectivity, whereas the 1-<i>N</i>-(4-amino-2<i>S</i>-hydroxybutyryl) modification has the opposite effect. When combined in plazomicin, the effects of the two groups on ribosomal selectivity cancel each other out, leading to the prediction that plazomicin will exhibit ototoxicity comparable to those of the parent and the current clinical aminoglycoside antibiotics gentamicin and tobramycin, as borne out by ex vivo studies with mouse cochlear explants. The 6′-<i>N</i>-(2-hydroxyethyl) modification restores antibacterial activity in the presence of the AAC(6′) aminoglycoside-modifying enzymes, while the 1-<i>N</i>-(4-amino-2<i>S</i>-hydroxybutyryl) modification overcomes resistance to the AAC(2′) class but is still affected to some extent by the AAC(3) class. Neither modification is able to circumvent the ArmA ribosomal methyltransferase-induced aminoglycoside resistance. The use of phenyltriazenyl protection for the secondary amino group of sisomicin facilitates the synthesis of each derivative and their characterization through the provision of sharp NMR spectra for all intermediates

    An Advanced Apralog with Increased in vitro and in vivo Activity toward Gram-negative Pathogens and Reduced ex vivo Cochleotoxicity

    Full text link
    We describe the convergent synthesis of a 5-O-β-D-ribofuranosyl-based apramycin derivative (apralog) that displays significantly improved antibacterial activity over the parent apramycin against wild-type ESKAPE pathogens. In addition, the new apralog retains excellent antibacterial activity in the presence of the only aminoglycoside modifying enzyme (AAC(3)-IV) acting on the parent, without incurring susceptibility to the APH(3') mechanism that disables other 5-O-β-D-ribofuranosyl 2-deoxystreptamine type aminoglycosides by phosphorylation at the ribose 5-position. Consistent with this antibacterial activity, the new apralog has excellent 30 nM activity (IC50 ) for the inhibition of protein synthesis by the bacterial ribosome in a cell-free translation assay, while retaining the excellent across-the-board selectivity of the parent for inhibition of bacterial over eukaryotic ribosomes. Overall, these characteristics translate into excellent in vivo efficacy against E. coli in a mouse thigh infection model and reduced ototoxicity vis à vis the parent in mouse cochlear explants

    Apralogs: Apramycin 5-O-Glycosides and Ethers with Improved Antibacterial Activity and Ribosomal Selectivity and Reduced Susceptibility to the Aminoacyltranserferase (3)-IV Resistance Determinant

    Full text link
    Apramycin is a structurally unique member of the 2-deoxystreptamine class of aminoglycoside antibiotics characterized by a mono-substituted 2-deoxystreptamine ring that carries an unusual bicyclic eight-carbon dialdose moiety. Because of its unusual structure apramycin is not susceptible to the most prevalent mechanisms of aminoglycoside resistance including the aminoglycoside-modifying enzymes and the ribosomal methyltransferases whose widespread presence severely compromises all aminoglycosides in current clinical practice. These attributes coupled with minimal ototoxocity in animal models combine to make apramycin an excellent starting point for the development of next-generation aminoglycoside antibiotics for the treatment of multidrug-resistant bacterial infections, particularly the ESKAPE pathogens. With this in mind we describe the design, synthesis, and evaluation of three series of apramycin derivatives, all functionalized at the 5-position, with the goals of increasing the antibacterial potency without sacrificing selectivity between bacterial and eukaryotic ribosomes, and of overcoming the rare aminoglycoside acetyltransferase (3)-IV class of aminoglycoside-modifying enzymes that constitutes the only documented mechanism of antimicrobial resistance to apramycin. We show that several apramycin-5-O-β-D-ribofuranosides, 5-O-β-D-eryrthofuranosides and even simple 5-O-aminoalkyl ethers are effective in this respect through the use of cell-free translation assays with wild-type bacterial and humanized bacterial ribosomes, and extensive antibacterial assays with wild-type and resistant Gram-negative bacterial carrying either single or multiple resistance determinants. Ex-vivo studies with mouse cochlear explants confirm the low levels of ototoxicity predicted on the basis of selectivity at the target level, while the mouse thigh infection model was used to demonstrate the superiority of an apramycin-5-O-glycoside in reducing the bacterial burden in-vivo
    corecore