18 research outputs found

    Kaempherol and Luteolin Decrease Claudin-2 Expression Mediated by Inhibition of STAT3 in Lung Adenocarcinoma A549 Cells

    Get PDF
    Claudin-2 is highly expressed in human lung adenocarcinoma tissues and may be a novel target for cancer chemotherapy because knockdown of claudin-2 decreases cell proliferation. We found that flavonoids including kaempferol, chrysin, and luteolin concentration-dependently decrease claudin-2 expression in lung adenocarcinoma A549 cells. Claudin-2 expression is up-regulated by mitogen-activated protein kinase kinase (MEK)/ extracellular signal-regulated kinase (ERK)/c-Fos and phosphoinositide 3-kinase (PI3K)/Akt/nuclear factor-κB (NF-κB) pathways, but these activities were not inhibited by kaempferol, chrysin, and luteolin. Promoter deletion assay using luciferase reporter vector showed that kaempferol and luteolin inhibit the function of transcriptional factor that binds to the region between −395 and −144 of claudin-2 promoter. The decrease in promoter activity was suppressed by mutation in signal transducers and activators of transcription (STAT)-binding site, which is located between −395 and −144. The phosphorylation level of STAT3 was not decreased, but the binding of STAT3 on the promoter region is suppressed by kaempferol and luteolin in chromatin immunoprecipitation assay. The inhibition of cell proliferation caused by kaempferol and luteolin was partially recovered by ectopic claudin-2 expression. Taken together, kaempferol and luteolin decreased claudin-2 expression and proliferation in A549 cells mediated by the inhibition of binding of STAT3 on the promoter region of claudin-2. The intake of foods and nutrients rich in these flavonoids may prevent lung adenocarcinoma developmen

    Seasonal Changes in Oceanic pCO 2

    No full text

    Quercetin Decreases Claudin-2 Expression Mediated by Up-Regulation of microRNA miR-16 in Lung Adenocarcinoma A549 Cells

    No full text
    Claudin-2 is highly expressed in human lung adenocarcinoma tissues and cells. Knockdown of claudin-2 decreases cell proliferation and migration. Claudin-2 may be a novel target for lung adenocarcinoma. However, there are no physiologically active substances of foods which decrease claudin-2 expression. We here found that quercetin, a flavonoid present in fruits and vegetables, time- and concentration-dependently decreases claudin-2 expression in lung adenocarcinoma A549 cells. In the present study, we examined what regulatory mechanism is involved in the decrease in claudin-2 expression by quercetin. Claudin-2 expression was decreased by LY-294002, a phosphatidylinositol 3-kinase (PI3-K) inhibitor, and U0126, a MEK inhibitor. These drugs inhibited the phosphorylation of Akt and ERK1/2, which are downstream targets of PI3-K and MEK, respectively. In contrast, quercetin did not inhibit the phosphorylation. Both LY-294002 and U0126 inhibited promoter activity of claudin-2, but quercetin did not. The stability of claudin-2 mRNA was decreased by quercetin. Quercetin increased the expression of microRNA miR-16. An inhibitor of miR-16 rescued quercetin-induced decrease in the claudin-2 expression. These results suggest that quercetin decreases claudin-2 expression mediated by up-regulation of miR-16 expression and instability of claudin-2 mRNA in lung adenocarcinoma cells

    Intestinal Mucosa-Associated Lymphoid Tissue Lymphoma Transforming into Diffuse Large B-Cell Lymphoma in a Young Adult Patient with Neurofibromatosis Type 1: A Case Report

    No full text
    Background: Neurofibromatosis type 1 (NF1) is a hereditary cancer syndrome characterized by multiple café-au-lait macules on the skin. Lymphoproliferative malignancies associated with NF1 are limited, although the most common are brain tumors. Case presentation: A 22-year-old woman with NF1 was admitted due to abdominal pain and bloody diarrhea. Her laboratory data exhibited macrocytic anemia and elevated IgA levels. Image studies showed diffuse increased wall thickening in the transverse and descending colon without lymphadenopathy and hepatosplenomegaly. A colonoscopy revealed a hemorrhagic ulcerated mass. Pathological analysis of the tumor tissues confirmed IgA-expressing mucosa-associated lymphoid tissue (MALT) lymphoma with histological transformation. Moreover, whole-exome sequencing in tumor tissues and peripheral blood mononuclear cells identified a somatic frameshift mutation of the A20 gene, which represents the loss of function. The patient responded well to R-CHOP chemotherapy, but the disease relapsed after 1 year, resulting in a lethal outcome. Conclusions: MALT lymphoma in children and young adults is extremely rare and is possibly caused by acquired genetic changes. This case suggests a novel association between hereditary cancer syndrome and early-onset MALT lymphoma

    Targeting Adaptive IRE1α Signaling and PLK2 in Multiple Myeloma: Possible Anti-Tumor Mechanisms of KIRA8 and Nilotinib

    No full text
    Background: Inositol-requiring enzyme 1α (IRE1α), along with protein kinase R-like endoplasmic reticulum kinase (PERK), is a principal regulator of the unfolded protein response (UPR). Recently, the ‘mono’-specific IRE1α inhibitor, kinase-inhibiting RNase attenuator 6 (KIRA6), demonstrated a promising effect against multiple myeloma (MM). Side-stepping the clinical translation, a detailed UPR phenotype in patients with MM and the mechanisms of how KIRA8 works in MM remains unclear. Methods: We characterized UPR phenotypes in the bone marrow of patients with newly diagnosed MM. Then, in human MM cells we analyzed the possible anti-tumor mechanisms of KIRA8 and a Food and Drug Administration (FDA)-approved drug, nilotinib, which we recently identified as having a strong inhibitory effect against IRE1α activity. Finally, we performed an RNA-sequence analysis to detect key IRE1α-related molecules against MM. Results: We illustrated the dominant induction of adaptive UPR markers under IRE1α over the PERK pathway in patients with MM. In human MM cells, KIRA8 decreased cell viability and induced apoptosis, along with the induction of C/EBP homologous protein (CHOP); its combination with bortezomib exhibited more anti-myeloma effects than KIRA8 alone. Nilotinib exerted a similar effect compared with KIRA8. RNA-sequencing identified Polo-like kinase 2 (PLK2) as a KIRA8-suppressed gene. Specifically, the IRE1α overexpression induced PLK2 expression, which was decreased by KIRA8. KIRA8 and PLK2 inhibition exerted anti-myeloma effects with apoptosis induction and the regulation of cell proliferation. Finally, PLK2 was pathologically confirmed to be highly expressed in patients with MM. Conclusion: Dominant activation of adaptive IRE1α was established in patients with MM. Both KIRA8 and nilotinib exhibited anti-myeloma effects, which were enhanced by bortezomib. Adaptive IRE1α signaling and PLK2 could be potential therapeutic targets and biomarkers in MM

    Blood biochemistry and plasma levels of osteopontin and pitavastatin.

    No full text
    <p>Mouse plasma was prepared from 32-weeks old apoE<sup>-/-</sup> mice fed with high-fat diet. Levels of phosphate (A), calcium (B), creatinine (C), cystatin C (D), urea (E), total cholesterol (F) and osteopontin (G) were measured in plasma from apoE<sup>-/-</sup> mice (n = 10), CRD apoE<sup>-/-</sup> mice (n = 14) and CRD apoE<sup>-/-</sup> mice treated with pitavastatin (CRD apoE<sup>-/-</sup> PTV, n = 18). Data are shown as mean ± SEM. H: Plasma concentration of pitavastatin given as food admixture in mice. ApoE<sup>-/-</sup> mice were fed a chow supplemented with pitavastatin at doses of 30, 100 and 300 mg/kg diet (0.003, 0.01 and 0.03% wt/wt) for 2 weeks. These doses were equivalent to 3, 10 and 30 mg pitavastatin/kg body weight, respectively. Mice treated with pitavastatin at a dose of 100 mg/kg diet had plasma concentration of 5.3 ± 1.0 ng/mL. Data are shown as mean ± SEM (n = 5).</p
    corecore