30 research outputs found

    Benchmarking the next generation of homology inference tools

    Get PDF
    Motivation: Over the last decades, vast numbers of sequences were deposited in public databases. Bioinformatics tools allow homology and consequently functional inference for these sequences. New profile-based homology search tools have been introduced, allowing reliable detection of remote homologs, but have not been systematically benchmarked. To provide such a comparison, which can guide bioinformatics workflows, we extend and apply our previously developed benchmark approach to evaluate the 'next generation' of profile-based approaches, including CS-BLAST, HHSEARCH and PHMMER, in comparison with the non-profile based search tools NCBI-BLAST, USEARCH, UBLAST and FASTA. Method: We generated challenging benchmark datasets based on protein domain architectures within either the PFAM + Clan, SCOP/Superfamily or CATH/Gene3D domain definition schemes. From each dataset, homologous and non-homologous protein pairs were aligned using each tool, and standard performance metrics calculated. We further measured congruence of domain architecture assignments in the three domain databases. Results: CSBLAST and PHMMER had overall highest accuracy. FASTA, UBLAST and USEARCH showed large trade-offs of accuracy for speed optimization. Conclusion: Profile methods are superior at inferring remote homologs but the difference in accuracy between methods is relatively small. PHMMER and CSBLAST stand out with the highest accuracy, yet still at a reasonable computational cost. Additionally, we show that less than 0.1% of Swiss-Prot protein pairs considered homologous by one database are considered non-homologous by another, implying that these classifications represent equivalent underlying biological phenomena, differing mostly in coverage and granularity. Availability and Implementation: Benchmark datasets and all scripts are placed at (http://sonnhammer.org/download/Homology_benchmark). Contact: [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online

    Domain tree-based analysis of protein architecture evolution

    Get PDF
    Understanding the dynamics behind domain architecture evolution is of great importance to unravel the functions of proteins. Complex architectures have been created throughout evolution by rearrangement and duplication events. An interesting question is how many times a particular architecture has been created, a form of convergent evolution or domain architecture reinvention. Previous studies have approached this issue by comparing architectures found in different species. We wanted to achieve a finer-grained analysis by reconstructing protein architectures on complete domain trees. The prevalence of domain architecture reinvention in 96 genomes was investigated with a novel domain tree-based method that uses maximum parsimony for inferring ancestral protein architectures. Domain architectures were taken from Pfam. To ensure robustness, we applied the method to bootstrap trees and only considered results with strong statistical support. We detected multiple origins for 12.4% of the scored architectures. In a much smaller data set, the subset of completely domain-assigned proteins, the figure was 5.6%. These results indicate that domain architecture reinvention is a much more common phenomenon than previously thought. We also determined which domains are most frequent in multiply created architectures and assessed whether specific functions could be attributed to them. However, no strong functional bias was found in architectures with multiple origins

    PathwAX: a web server for network crosstalk based pathway annotation

    Get PDF
    Pathway annotation of gene lists is often used to functionally analyse biomolecular data such as gene expression in order to establish which processes are activated in a given experiment. Databases such as KEGG or GO represent collections of how genes are known to be organized in pathways, and the challenge is to compare a given gene list with the known pathways such that all true relations are identified. Most tools apply statistical measures to the gene overlap between the gene list and pathway. It is however problematic to avoid false negatives and false positives when only using the gene overlap. The pathwAX web server (http://pathwAX.sbc.su.se/) applies a different approach which is based on network crosstalk. It uses the comprehensive network FunCoup to analyse network crosstalk between a query gene list and KEGG pathways. PathwAX runs the BinoX algorithm, which employs Monte-Carlo sampling of randomized networks and estimates a binomial distribution, for estimating the statistical significance of the crosstalk. This results in substantially higher accuracy than gene overlap methods. The system was optimized for speed and allows interactive web usage. We illustrate the usage and output of pathwAX

    Domainoid: domain-oriented orthology inference

    Get PDF
    BACKGROUND: Orthology inference is normally based on full-length protein sequences. However, most proteins contain independently folding and recurring regions, domains. The domain architecture of a protein is vital for its function, and recombination events mean individual domains can have different evolutionary histories. It has previously been shown that orthologous proteins may differ in domain architecture, creating challenges for orthology inference methods operating on full-length sequences. We have developed Domainoid, a new tool aiming to overcome these challenges faced by full-length orthology methods by inferring orthology on the domain level. It employs the InParanoid algorithm on single domains separately, to infer groups of orthologous domains. RESULTS: This domain-oriented approach allows detection of discordant domain orthologs, cases where different domains on the same protein have different evolutionary histories. In addition to domain level analysis, protein level orthology based on the fraction of domains that are orthologous can be inferred. Domainoid orthology assignments were compared to those yielded by the conventional full-length approach InParanoid, and were validated in a standard benchmark. CONCLUSIONS: Our results show that domain-based orthology inference can reveal many orthologous relationships that are not found by full-length sequence approaches. AVAILABILITY: https://bitbucket.org/sonnhammergroup/domainoid/

    A novel method for crosstalk analysis of biological networks: improving accuracy of pathway annotation

    Get PDF
    Analyzing gene expression patterns is a mainstay to gain functional insights of biological systems. A plethora of tools exist to identify significant enrichment of pathways for a set of differentially expressed genes. Most tools analyze gene overlap between gene sets and are therefore severely hampered by the current state of pathway annotation, yet at the same time they run a high risk of false assignments. A way to improve both true positive and false positive rates (FPRs) is to use a functional association network and instead look for enrichment of network connections between gene sets. We present a new network crosstalk analysis method BinoX that determines the statistical significance of network link enrichment or depletion between gene sets, using the binomial distribution. This is a much more appropriate statistical model than previous methods have employed, and as a result BinoX yields substantially better true positive and FPRs than was possible before. A number of benchmarks were performed to assess the accuracy of BinoX and competing methods. We demonstrate examples of how BinoX finds many biologically meaningful pathway annotations for gene sets from cancer and other diseases, which are not found by other methods. BinoX is available at http://sonnhammer.org/BinoX

    A probabilistic model for gene content evolution with duplication, loss, and horizontal transfer

    Full text link
    We introduce a Markov model for the evolution of a gene family along a phylogeny. The model includes parameters for the rates of horizontal gene transfer, gene duplication, and gene loss, in addition to branch lengths in the phylogeny. The likelihood for the changes in the size of a gene family across different organisms can be calculated in O(N+hM^2) time and O(N+M^2) space, where N is the number of organisms, hh is the height of the phylogeny, and M is the sum of family sizes. We apply the model to the evolution of gene content in Preoteobacteria using the gene families in the COG (Clusters of Orthologous Groups) database

    Classification of protein domain families for genomic sequence analysis

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN009553 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Predicting protein function from domain content

    No full text
    Motivation: Computational assignment of protein function may be the single most vital application of bioinformatics in the post-genome era. These assignments are made based on various protein features, where one is the presence of identifiable domains. The relationship between protein domain content and function is important to investigate, to understand how domain combinations encode complex functions. Results: Two different models are presented on how protein domain combinations yield specific functions: one rule-based and one probabilistic. We demonstrate how these are useful for Gene Ontology annotation transfer. The first is an intuitive generalization of the Pfam2GO mapping, and detects cases of strict functional implications of sets of domains. The second uses a probabilistic model to represent the relationship between domain content and annotation terms, and was found to be better suited for incomplete training sets. We implemented these models as predictors of Gene Ontology functional annotation terms. Both predictors were more accurate than conventional best BLAST-hit annotation transfer and more sensitive than a single-domain model on a large-scale dataset. We present a number of cases where combinations of Pfam-A protein domains predict functional terms that do not follow from the individual domains. Availability: Scripts and documentation are available for download at http://sonnhammer.sbc.su.se/multipfam2go_source_docs.ta

    Evolution of protein domain architectures

    No full text
    This chapter reviews the current research on how protein domain architectures evolve. We begin by summarizing work on the phylogenetic distribution of proteins, as this directly impacts which domain architectures can be formed in different species. Studies relating domain family size to occurrence have shown that they generally follow power law distributions, both within genomes and larger evolutionary groups. These findings were subsequently extended to multidomain architectures. Genome evolution models that have been suggested to explain the shape of these distributions are reviewed, as well as evidence for selective pressure to expand certain domain families more than others. Each domain has an intrinsic combinatorial propensity, and the effects of this have been studied using measures of domain versatility or promiscuity. Next, we study the principles of protein domain architecture evolution and how these have been inferred from distributions of extant domain arrangements. Following this, we review inferences of ancestral domain architecture and the conclusions concerning domain architecture evolution mechanisms that can be drawn from these. Finally, we examine whether all known cases of a given domain architecture can be assumed to have a single common origin (monophyly) or have evolved convergently (polyphyly)
    corecore