52 research outputs found

    A complete census of AGN and their hosts from optical surveys?

    Full text link
    Large optical surveys provide an unprecedented census of galaxies in the local Universe, forming an invaluable framework into which more detailed studies of objects can be placed. But how useful are optical surveys for understanding the co-evolution of black holes and galaxies, given their limited wavelength coverage, selection criteria, and depth? In this conference paper I present work-in-progress comparing optical and mid-IR diagnostics of three "unusual" low redshift populations (luminous Seyferts, dusty Balmer-strong AGN, ULIRGs) with a set of ordinary star-forming galaxies from the SDSS. I address the questions: How well do the mid-infrared and optical diagnostics of star formation and AGN strength agree? To what extent do optical surveys allow us to include extreme, dusty, morphologically disturbed galaxies in our "complete" census of black hole-galaxy co-evolution?Comment: Proceedings of contributed talk at "Co-Evolution of Central Black Holes and Galaxies" (eds. B.M. Peterson, R.S. Somerville, and T. Storchi-Bergmann), IAU symposium 267, August 2009. 6 pages, 5 figure

    A Reexamination of Phosphorus and Chlorine Depletions in the Diffuse Interstellar Medium

    Full text link
    We present a comprehensive examination of interstellar P and Cl abundances based on an analysis of archival spectra acquired with the Space Telescope Imaging Spectrograph of the Hubble Space Telescope and the Far Ultraviolet Spectroscopic Explorer. Column densities of P II, Cl I, and Cl II are determined for a combined sample of 107 sight lines probing diffuse atomic and molecular gas in the local Galactic interstellar medium (ISM). We reevaluate the nearly linear relationship between the column densities of Cl I and H2_2, which arises from the rapid conversion of Cl+^+ to Cl0^0 in regions where H2_2 is abundant. Using the observed total gas-phase P and Cl abundances, we derive depletion parameters for these elements, adopting the methodology of Jenkins. We find that both P and Cl are essentially undepleted along sight lines showing the lowest overall depletions. Increasingly severe depletions of P are seen along molecule-rich sight lines. In contrast, gas-phase Cl abundances show no systematic variation with molecular hydrogen fraction. However, enhanced Cl (and P) depletion rates are found for a subset of sight lines showing elevated levels of Cl ionization. An analysis of neutral chlorine fractions yields estimates for the amount of atomic hydrogen associated with the H2_2-bearing gas in each direction. These results indicate that the molecular fraction in the H2_2-bearing gas is at least 10% for all sight lines with logN(H2)18\log N({\rm H}_2)\gtrsim18 and that the gas is essentially fully molecular at logN(H2)21\log N({\rm H}_2)\approx21.Comment: 44 pages, 21 figures, accepted for publication in Ap

    Spitzer spectral line mapping of supernova remnants: I. Basic data and principal component analysis

    Get PDF
    We report the results of spectroscopic mapping observations carried out toward small (1 x 1 arcmin) regions within the supernova remnants W44, W28, IC443, and 3C391 using the Infrared Spectrograph of the Spitzer Space Telescope. These observations, covering the 5.2 - 37 micron spectral region, have led to the detection of a total of 15 fine structure transitions of Ne+, Ne++, Si+, P+, S, S++, Cl+, Fe+, and Fe++; the S(0) - S(7) pure rotational lines of molecular hydrogen; and the R(3) and R(4) transitions of hydrogen deuteride. In addition to these 25 spectral lines, the 6.2, 7.7, 8.6, 11.3 and 12.6 micron PAH emission bands were also observed. Most of the detected line transitions have proven strong enough to map in several sources, providing a comprehensive picture of the relative distribution of the various line emissions observable in the Spitzer/IRS bandpass. A principal component analysis of the spectral line maps reveals that the observed emission lines fall into five distinct groups, each of which may exhibit a distinct spatial distribution: (1) lines of S and H2 (J > 2); (2) the H2 S(0) line; (3) lines of ions with appearance potentials less than 13.6 eV; (4) lines of ions with appearance potentials greater than 13.6 eV, not including S++; (5) lines of S++. Lines of group (1) likely originate in molecular material subject to a slow, nondissociative shock that is driven by the overpressure within the supernova remnant, and lines in groups (3) - (5) are associated primarily with dissociative shock fronts with a range of (larger) shock velocities. The H2 S(0) line shows a low-density diffuse emission component, and - in some sources - a shock-excited component.Comment: 43 pages, including 21 figures. Accepted for publication in Ap

    Studies of Diffuse Interstellar Bands. V. Pairwise Correlations of Eight Strong DIBs and Neutral Hydrogen, Molecular Hydrogen, and Color Excess

    Full text link
    We establish correlations between equivalent widths of eight diffuse interstellar bands (DIBs), and examine their correlations with atomic hydrogen, molecular hydrogen, and EB-V . The DIBs are centered at \lambda\lambda 5780.5, 6204.5, 6283.8, 6196.0, 6613.6, 5705.1, 5797.1, and 5487.7, in decreasing order of Pearson\^as correlation coefficient with N(H) (here defined as the column density of neutral hydrogen), ranging from 0.96 to 0.82. We find the equivalent width of \lambda 5780.5 is better correlated with column densities of H than with E(B-V) or H2, confirming earlier results based on smaller datasets. We show the same is true for six of the seven other DIBs presented here. Despite this similarity, the eight strong DIBs chosen are not well enough correlated with each other to suggest they come from the same carrier. We further conclude that these eight DIBs are more likely to be associated with H than with H2, and hence are not preferentially located in the densest, most UV shielded parts of interstellar clouds. We suggest they arise from different molecules found in diffuse H regions with very little H (molecular fraction f<0.01). Of the 133 stars with available data in our study, there are three with significantly weaker \lambda 5780.5 than our mean H-5780.5 relationship, all of which are in regions of high radiation fields, as previously noted by Herbig. The correlations will be useful in deriving interstellar parameters when direct methods are not available. For instance, with care, the value of N(H) can be derived from W{\lambda}(5780.5).Comment: Accepted for publication in The Astrophysical Journal; 37 pages, 11 figures, 6 table

    Detection of Extended Hot Water in the Outflow from NGC 2071

    Full text link
    We report the results of spectroscopic mapping observations carried out toward a ~1 min x 1 min region within the northern lobe of the outflow from NGC 2071 using the Infrared Spectrograph (IRS) of the Spitzer Space Telescope. These observations covered the 5.2-37 um spectral region and have led to the detection of a number of ionic, atomic, and molecular lines, including fine-structure emission of Si+, Fe+, S++, S, the S(0)-S(7) pure rotational lines of H2, the R(3) and R(4) transitions of HD, and at least 11 transitions of H2O. In addition, the 6.2, 7.4, 7.6, 7.9, 8.6 and 11.3 um PAH emission bands were also observed and several transitions of OH were tentatively detected. Most of the detected line transitions were strong enough to map including, for the first time, three transitions of hot H2O. We find that: (1) the water emission is extended; (2) the extended emission is aligned with the outflow; and, (3) the spatial distribution of the water emission generally follows that observed for H2. Based on the measured line intensities, we derive an HD abundance relative to H2 of 1.1-1.8 10^-5 and an H2O number density of 12-2 cm^3. The H2 density in the water-emitting region is not well constrained by our observations, but is likely between 3 10^4 and 10^6 cm^3, yielding an H2O abundance relative to H2 of between 2 10^-5 and 6 10^-4. Future observations planned for the Herschel Space Observatory should greatly improve the density estimate, and thus our knowledge of the H2O abundance, for the water-emitting regions reported here. Finally, we note a possible departure from the H2O ortho-to-para ratio of 3:1 expected for water formed in hot post-shocked gas, suggesting that a significant fraction of the water vapor we detect may arise from H2O sputtered from cold dust grains.Comment: 35 pages, 15 figures, 4 tables, accepted for publication in Ap

    Unusually Weak Diffuse Interstellar Bands toward HD 62542

    Get PDF
    As part of an extensive survey of diffuse interstellar bands (DIBs), we have obtained optical spectra of the moderately reddened B5V star HD 62542, which is known to have an unusual UV extinction curve of the type usually identified with dark clouds. The typically strongest of the commonly catalogued DIBs covered by the spectra -- those at 5780, 5797, 6270, 6284, and 6614 A -- are essentially absent in this line of sight, in marked contrast with other lines of sight of similar reddening. We compare the HD 62542 line of sight with others exhibiting a range of extinction properties and molecular abundances and interpret the weakness of the DIBs as an extreme case of deficient DIB formation in a dense cloud whose more diffuse outer layers have been stripped away. We comment on the challenges these observations pose for identifying the carriers of the diffuse bands.Comment: 20 pages, 4 figures; aastex; accepted by Ap

    A High-precision Survey of the D/H Ratio in the Nearby Interstellar Medium

    Get PDF
    We present high signal-to-noise ratio measurements of the H i Lyα absorption line toward 16 Galactic targets that are at distances between approximately 190 and 2200 pc, all beyond the wall of the Local Bubble. We describe the models used to remove stellar emission and absorption features and the methods used to account for all known sources of error in order to compute high-precision values of the H i column density with robust determinations of the uncertainties. When combined with H2 column densities from other sources, we find total H column densities ranging from 1020.01 to 1021.25 cm−2. Using deuterium column densities from Far Ultraviolet Spectroscopic Explorer observations we determine the D/H ratio along the sight lines. We confirm and strengthen the conclusion that D/H is spatially variable over these H i column density and target distance regimes, which predominantly probe the interstellar medium outside the Local Bubble. We discuss how these results affect models of Galactic chemical evolution. We also present an analysis of metal lines along the five sight lines for which we have high-resolution spectra and, along with results reported in the literature, discuss the corresponding column densities in the context of a generalized depletion analysis. We find that D/H is only weakly correlated with metal depletion and conclude that the spatial D/H variability is not solely due to dust depletion. A bifurcation of D/Htot as a function of depletion at high depletion levels provides modest support that deuterium-rich gas is infalling onto the Galactic plane
    corecore