1 research outputs found

    Influence of APTES-Decorated Mesoporous Silica on the Dynamics of Ethylene Glycol MoleculesInsights from Variable Temperature <sup>2</sup>H Solid-State NMR

    No full text
    The physicochemical effects of decorating pore walls of high surface area materials with functional groups are not sufficiently understood, despite the use of these materials in a multitude of applications such as catalysis, separations, or drug delivery. In this study, the influence of 3-amino-propyl triethoxysilane (APTES)-modified SBA-15 on the dynamics of deuterated ethylene glycol (EG-d4) is inspected by comparing three systems: EG-d4 in the bulk phase (sample 1), EG-d4 confined in SBA-15 (sample 2), and EG-d4 confined in SBA-15 modified with APTES (sample 3). The phase behavior (i.e., melting, crystallization, glass formation, etc.) of EG-d4 in these three systems is studied by differential scanning calorimetry. Through line shape analysis of the 2H solid-state NMR (2H ssNMR) spectra of the three systems recorded at different temperatures, two signal patterns, (i) a Lorentzian (liquid-like) and (ii) a Pake pattern (solid-like), are identified from which the distribution of activation energies for the dynamic processes is calculated employing a two-phase model
    corecore