135 research outputs found

    Essential control of an endothelial cell ISOC by the spectrin membrane skeleton

    Get PDF
    Mechanism(s) underlying activation of store-operated Ca2+ entry currents, ISOC, remain incompletely understood. F-actin configuration is an important determinant of channel function, although the nature of interaction between the cytoskeleton and ISOC channels is unknown. We examined whether the spectrin membrane skeleton couples Ca2+ store depletion to Ca2+ entry. Thapsigargin activated an endothelial cell ISOC (−45 pA at −80 mV) that reversed at +40 mV, was inwardly rectifying when Ca2+ was the charge carrier, and was inhibited by La3+ (50 μM). Disruption of the spectrin–protein 4.1 interaction at residues A207-V445 of βSpIIΣ1 decreased the thapsigargin-induced global cytosolic Ca2+ response by 50% and selectively abolished the endothelial cell ISOC, without altering activation of a nonselective current through cyclic nucleotide–gated channels. In contrast, disruption of the spectrin–actin interaction at residues A47-K186 of βSpIIΣ1 did not decrease the thapsigargin-induced global cytosolic Ca2+ response or inhibit ISOC. Results indicate that the spectrin–protein 4.1 interaction selectively controls ISOC, indicating that physical coupling between calcium release and calcium entry is reliant upon the spectrin membrane skeleton

    SparseByteNN: A Novel Mobile Inference Acceleration Framework Based on Fine-Grained Group Sparsity

    Full text link
    To address the challenge of increasing network size, researchers have developed sparse models through network pruning. However, maintaining model accuracy while achieving significant speedups on general computing devices remains an open problem. In this paper, we present a novel mobile inference acceleration framework SparseByteNN, which leverages fine-grained kernel sparsity to achieve real-time execution as well as high accuracy. Our framework consists of two parts: (a) A fine-grained kernel sparsity schema with a sparsity granularity between structured pruning and unstructured pruning. It designs multiple sparse patterns for different operators. Combined with our proposed whole network rearrangement strategy, the schema achieves a high compression rate and high precision at the same time. (b) Inference engine co-optimized with the sparse pattern. The conventional wisdom is that this reduction in theoretical FLOPs does not translate into real-world efficiency gains. We aim to correct this misconception by introducing a family of efficient sparse kernels for ARM and WebAssembly. Equipped with our efficient implementation of sparse primitives, we show that sparse versions of MobileNet-v1 outperform strong dense baselines on the efficiency-accuracy curve. Experimental results on Qualcomm 855 show that for 30% sparse MobileNet-v1, SparseByteNN achieves 1.27x speedup over the dense version and 1.29x speedup over the state-of-the-art sparse inference engine MNN with a slight accuracy drop of 0.224%. The source code of SparseByteNN will be available at https://github.com/lswzjuer/SparseByteN

    Assessment of the three-dimensional flow field in the reactor pressure vessel in Hualong One nuclear power plants

    Get PDF
    This study uses computational fluid dynamics (CFD) to investigate the three-dimensional flow field under normal operating conditions in the reactor pressure vessel (RPV) in the Hualong One nuclear power plants (NPPs). With a particular focus on the flowrate distribution at the core inlet, the numerical framework is validated against the integral hydraulic experiment in a 1:4-scaled RPV of CNP1000, the prototype of the Hualong One reactor. The simulation results of the normalized flowrate at the core inlet agree reasonably well with the measured data. Based on the experimental data, several methods of calibrating the CFD turbulence model coefficients are suggested by introducing the concepts of data assimilation and machine learning. The flow field in a realistic RPV for Hualong One is predicted using the validated numerical framework, showing that the flowrate distribution at the core inlet is nearly homogeneous and that the turbulent intensity is acceptably low for each fuel assembly. It can provide essential information for the reactor core thermal–hydraulic design and the fuel assembly mechanical assessment

    Nano- and Macroscale Study of the Lubrication of Titania Using Pure and Diluted Ionic Liquids

    Get PDF
    Titanium is a strong, corrosion-resistant light—weight metal which is poised to replace steel in automobiles, aircraft, and watercraft. However, the titanium oxide (titania) layer that forms on the surface of titanium in air is notoriously difficult to lubricate with conventional lubricants, which restricts its use in moving parts such as bearings. Ionic liquids (ILs) are potentially excellent lubricants for titania but the relationship between IL molecular structure and lubricity for titania remains poorly understood. Here, three-ball-on-disk macrotribology and atomic force microscopy (AFM) nanotribology measurements reveal the lubricity of four IL lubricants: trioctyl(2-ethylhexyl)phosphonium bis(2-ethylhexyl)phosphate (P8,8,8,6(2) BEHP), trihexyl(tetradecyl)phosphonium bis(2-ethylhexyl)phosphate (P6,6,6,14 BEHP), trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate (P6,6,6,14 (iC8)2PO2), and trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide (P6,6,6,14 TFSI). The macrotribology measurements demonstrated that friction decreased in P6,6,6,14 TFSI by four times (μ = 0.13) compared to in hexadecane, even at 60°C and loads up to 10 N. On the other hand, P8,8,8,6(2) BEHP reduced friction most effectively in the AFM nanotribology measurements. The results were interpreted in terms of the lubrication regime. The lower viscosity of P6,6,6,14 TFSI coupled with its good boundary lubrication made it the most effective IL for the macrotribology measurements, which were in the mixed lubrication regime. Conversely, the cation structure of P8,8,8,6(2) BEHP allowed it to adsorb strongly to the surface and minimized energy dissipation in the nanotribology measurements, although its high bulk viscosity inhibited its performance in the mixed regime. These results reinforce the importance of carefully selecting IL lubricants based on the lubrication regime of the sliding surfaces

    Classification and instability mechanism of anchored “beam-arch” composite structure in rock burst roadways with top-coal

    Get PDF
    The rock burst frequently occurs in the roadways with top coal, and the roof disasters are particularly severe under dynamic stress in China. In order to explore the classification and instability mechanisms of anchoring structures in the roadways with top-coal, analog simulation experiments, theoretical analysis, and data statistics were used under the engineering background of the large-area rock burst roof failure in the Working Face 301 of a mine in Shaanxi Province, China. The dynamic load response characteristics of the stress, displacement, and surface acceleration of the surrounding rock in the roadways with top coal were analyzed. The classification characteristics of the roof anchoring structure under the influence of top coal thickness and cables were studied. The stress response mechanism of the roadways with top coal under elastic waves was explored, and the instability mechanism of the anchoring “beam arch” structure was proposed. The rock burst resistance of the air-return roadway in the Working Face 301 was evaluated, and the corresponding optimization schemes for the “beam-arch” composite structure were proposed. The results show that ① the monitoring data of stress and displacement of the surrounding rock in the roadways with top coal under dynamic stress verify the existence of internal and external beam or arch anchoring structures in the roof. Due to the increase in the thickness of top coal, there is a transition from “beam” to “arch” in the anchoring structure of the inner layer of the roof; ② based on the relative relationship between the thickness of the top coal and the cables, the roof anchoring structure is divided into “superimposed-beam and arch” for thin top coal, “composite-beam and arch” for thick top coal, and “combined arch” for extra thick top coal. A critical thickness index for the transformation of thick coal beams from “beam” to “arch” is established; ③ the instability mechanism of the beam structure and the arch structure is that they fail after reaching their tensile and shear strength limits under dynamic and static stress, respectively. The amplification effect of the “beam-arch” composite structure on the load stress is significantly affected by its size; ④ the bearing strength of the inner arch in the "combined arch" structure is relatively low. Increasing the length of cables can increase the thickness of the inner arch, and the corresponding “combined arch” structure’s bearing strength increases significantly, which is consistent with the evaluation results of the rock burst resistance
    corecore