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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

UAVs are envisioned to play a big role in disaster rescue, with their capabilities such 

as information transmission at a long distance, searching in a disaster area, and surveillance of 

the target in the air or on the ground.  In the article [1], a drone-to-drone communication system 

was built to transfer information at a long distance for a catastrophe scenario. Through the 

drone-to-drone communication system, real-time video of the disaster zone can be transmitted 

to the rescue center. Drones sometimes need to work with robots on the ground to scan the 

disaster area so to get close to a target to obtain the detailed information, in scenarios such as 

earthquake or the catastrophe of a chemical factory. In these cases, the drone can bring a robot 

with a camera to the disaster area. Then the drone drops the robot on the ground and follows it 

using the camera equipped on the drone. Meanwhile, the drone transfers the real-time video 

from both cameras to the rescue center.  

Motivated by the above scenarios, our goal is to make the follower drone track the 

leader robot as much as possible, as the air-to-ground communication requires the robot to be 

within a distance to the drone.  In this research, we address the leader-follower tracking 

problem using camera vision. As the preliminary effort, we implemented the vision-based 

tracking algorithm on a ground robot system, and leave the implementation on the drone 

platform to the future work. 

1.2 Overview of the Thesis 

 The remainder of this thesis is organized as follows. Chapter 2 reviews two approaches 

to leader-follower tracking problem using camera vision and analyzes their defects that 

motivated this research. One approach is to use the area of the sphere in the camera frame to 
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track the leader target. The other is to use the positions of three features in the camera frame to 

locate the leader target and then achieve the leader-follower tracking task. Chapter 2 also 

justifies a key assumption to this thesis, that one camera installed on the follower can determine 

the position of a sphere ball installed on the leader.    

 Chapter 3 describes our method for tracking one sphere ball using camera vision and a 

proportional controller in the leader-follower tracking system. In this chapter, we first describe 

the algorithm to locate the sphere ball using camera vision, then provides the model of a 

differential drive robot, and finally describe the control algorithm to implement the follower to 

track the sphere target.  

 Chapter 4 describes the simulation and implementation of our leader-follower tracking 

algorithm described in Chapter 3. The chapter also provides the information of the hardware 

and software used in the research.  

 Finally, Chapter 5 includes a conclusion and a brief discussion of future works. 
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CHAPTER 2 

ANALYSIS OF TWO EXISTING APPROACHES FOR OBJECTS’ POSITION USING 

CAMERA VISION  

 

2.1 Introduction  

Our goal is to build a leader-follower tracking system using camera vision. To track the 

leader, the follower needs to obtain leader information using its own camera, such as estimated 

velocity and angular velocity of the leader, the relative position of the leader and follower, and 

the bearing angle between the headings of the follower and the leader. Since the velocity and 

angular velocity of the leader and the bearing angle can be inferred from the relative position, 

the relative position is an key quantity to estimate for leader-follower tracking algorithm. 

Through the geometry relationship between cameras on the follower and features on the leader, 

the relative position of robots can be calculated, as shown in these papers [2]-[6]. Motivated 

by implementation concerns of this project, we try to develop a tracking algorithm with 

minimal hardware and feature usage. In particular, when drones and robots search a disaster 

zone, they need to load batteries, sensors, microcontrollers, and antennas so that there is little 

space left for cameras or multiple well-separated features on their frames.  Meanwhile, the 

lighter weight can prolong the running time of drones and robots. As a result, we aim to use 

the minimal number of cameras and features to complete the tracking task.  

In paper [5][4], Davison and Murray calculate the object’s position using two cameras 

and one feature. In paper [6], Fang et al describe an approach to calculate the objects’ location 

using one camera and four features on one plane. In consideration of the load limitation of 

robots and the implementation inconveniences, the number of cameras and features in paper 

[5],[6]doesn’t match our requirement of using a minimal number of cameras and features in 

our research. 
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In paper [7], an object’s relative distance, which is scaled by the area of one feature (a 

ball) in the camera frame, is obtained using one camera and one feature (a ball).  When the area 

of the ball decreases in the camera frame, it means the ball is moving away from the camera, 

or the ball is approaching the camera. This approach didn’t provide the relative position 

between the camera and the ball.  In this thesis, we call the method location-feature-area. In 

paper [8], Chen and Jia use one camera and three features to estimate the leader’s position. The 

location method uses the positions of three features in one camera view. This approach is 

referred to as location-feature-position in this thesis. Although the location-feature-area and 

location-feature-position better match with our requirement compared to [5] and [6], they are 

still not suitable for our research. As the location-feature-area method cannot provide the 

relative position between the camera and the ball, we cannot build an advanced controller to 

improve the performance of the leader-follower tracking system for our research. In addition, 

as the requirements of multiple features in the location-feature-position method are hard to 

achieve (described in Section 2.3), we cannot implement this approach for our research. We 

conducted simulation and analysis for these two approaches, which further demonstrate show 

their defects if being applied in this research. Motivated by problems of these two approaches, 

we aim to develop an approach to track the leader using only one camera and one feature.  

The remainder of this chapter is organized as followers. Chapter 2.2 describes the 

projection model of a camera. Chapter 2.3 describes and evaluates the location-feature-area 

approach. Chapter 2.4 describes and evaluates the location-feature-position approach. Chapter 

2.5 provides a brief conclusion and discusses a key assumption that we use for target’ location 

tracking using camera vision. 

 

2.2 Camera Projection Model 
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 This section describes the camera projection model that is used to locate an object’s 

position. This model represents the geometric relationship between an image point and its 

relative point in the camera coordinates. As shown in Figure 1.(a), O is the original point in the 

camera’s coordinates; 𝑍 axis is the optical axis of the camera and perpendicular to the image 

plane at point 𝑜; 𝑜 is the original point in the image coordinates; the distance between O and 

image plane is 𝑓 , in fact, 𝑓  is the camera’s focal length; point P (𝑋, 𝑌, 𝑍) in the camera 

coordinates projects to point p (𝑥, 𝑦) on the image plane. 

Figure 1 Illustration of camera projection; (a) The projection from the camera frame to the 

image plane. (b) The original point 𝒐 of the image coordinates is the center point of the pixel 
coordinates. 

According to book [9], point 𝑃 projects to point 𝑝 via: 

 [
𝑥
𝑦
1
] = [

𝑓

𝑍
0 0

0
𝑓

𝑍
0

0 0 1

] [
𝑋
𝑌
1
]  (2-1) 

Then point 𝑝  projects on the CCD (charged coupled device) sensor plane and it can be 

expressed in the pixel coordinate via: 

 [
𝑚
𝑛
1
] =

[
 
 
 
1

𝛼𝑢
0 𝑚𝑜

0
1

𝛼𝑣
𝑛𝑜

0 0 1 ]
 
 
 
[
𝑥
𝑦
1
]  (2-2)      

where (𝑚𝑜, 𝑛𝑜) is the principle point in pixel coordinate, 𝛼𝑢 and 𝛼𝑣 are one pixel physical 

dimensions in the horizontal direction u and vertical direction v (see Figure 1).  
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In view of (2-1) and (2-2), the above matrix is rewritten as: 

 [
𝑚
𝑛
1
] = [

1/𝛼𝑢 0 𝑚𝑜

0 1/𝛼𝑣 𝑛𝑜
0 0 1

] [

𝑓

𝑍
0 0

0
𝑓

𝑍
0

0 0 1

] [
𝑋
𝑌
1
]   (2-3) 

 [
𝑚
𝑛
1
] = [

𝑓𝑥

𝑍
0 𝑚𝑜

0
𝑓𝑦

𝑍
𝑛𝑜

0 0 1

] [
𝑋
𝑌
1
]  (2-4) 

where 𝑓𝑥 = 𝑓/𝛼𝑢, 𝑓𝑦 = 𝑓/𝛼𝑣 .  In addition, 𝑓𝑥, 𝑓𝑦 , 𝑚𝑜, 𝑛𝑜 are the intrinsic parameters 

and can be obtained by the camera calibration procedure.  

2.3 The Location-feature-area Method 

The section reviews the location-

feature-area method which was 

implemented on the CMUcam5 Pixy sensor 

(Pixy) [7] in Figure 2. This sensor was 

designed by Charmed Labs for color 

detection. It consists of a microcontroller 

NXP LPC4330 and an image sensor 

Omnivision OV9715. Pixy possesses the 

following features. 1) It has a fast speed to 

process digital images. Its speed can arrive 50 times per second. 2) It is convenient for users to 

use. Pixy has a friendly interface which works with Raspberry Pi, Arduino, and BeagleBone. 

Pixy provides its library for these microcontrollers so that users don’t need to knowledge 

principles of pattern recognition or compile codes to detect a target. The detection procedure 

of Pixy is in the following. Through the software PixyMon that Charmed Labs offers, users 

decide which color to be identified. When the target color is detected, Pixy draws the target 

with a straight rectangle. For instance, in Figure 3, the target color is red, and the Pixy draws 

Figure 2 CMUcam5 Pixy sensor. 
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out the target with a square contour. Users just call functions from Pixy’s library to obtain the 

area 𝑆 and center location (𝑥𝑢(𝑡), 𝑦𝑣(𝑡)) of the contour in the camera frame. Meanwhile, the 

bearing angle 𝛽(𝑡) between the camera and the heading of the robot can be obtained.  

In paper [7], a mobile robot tracks a ball using a proportional controller:           

𝑉𝐹(𝑡) = 𝑆𝑑 − 𝑆(𝑡)𝑣𝑔𝑎𝑖𝑛 

 dv(𝑡) = ((𝛽𝑑 − 𝛽(𝑡)) + (𝛽𝑑 − 𝛽(𝑡))𝑉𝑓(𝑡) )𝑑𝑔𝑎𝑖𝑛     

𝑉𝑙(𝑡) = 𝑉𝐹(𝑡) + 𝑑𝑣(𝑡) 

𝑉𝑟(𝑡) = 𝑉𝐹(𝑡) − 𝑑𝑣(𝑡) 

Where 𝑆𝑑is the desired size of the ball,  𝛽𝑑  is the desired bearing angular, 𝑉𝑔𝑎𝑖𝑛 and  𝑑𝑔𝑎𝑖𝑛   are 

the feedback gains, dv (𝑡)Steering differential, 𝑉𝑙 (𝑡)is the velocity of left wheel, 𝑉𝑟(𝑡) is the 

velocity of right wheel.  

And the controller for the camera to tracking the ball is shown in the following equations                          

ex(𝑡) = 𝑥𝑢0 − 𝑥𝑢(𝑡) 

Figure 3 The contour of detected target (taken from [7]). 
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ey(𝑡) = 𝑦𝑢(𝑡) − 𝑦𝑢𝑜 

 𝑉𝑐𝑝(𝑡) = 𝑒𝑥(𝑡)𝑝𝐺𝑎𝑖𝑛 + 𝑒𝑥̇(𝑡)𝑑𝐺𝑎𝑖𝑛    

𝑉𝑐𝑡(𝑡) = 𝑒𝑦(𝑡)𝑝𝐺𝑎𝑖𝑛 + 𝑒𝑦(𝑡)̇ 𝑑𝐺𝑎𝑖𝑛 

where (𝑥𝑢0, 𝑦𝑣0) is the intrinsic center of the camera, the derivatives of  𝑒𝑥(𝑡) and 𝑒𝑦(𝑡) are 𝑒𝑥̇ 

and 𝑒𝑦̇ 𝑝𝐺𝑎𝑖𝑛 and 𝑑𝐺𝑎𝑖𝑛 are the feedback gains, 𝑉𝑐𝑝(𝑡) and 𝑉𝑐𝑡(𝑡) are the velocities of the pan 

servo and the tilt servo. In order to simulate the leader-follower tracking system using the 

location-feature-area method, we build the code to simulate in MATLAB. 

The pseudocode for leader-follower tracking system using the location-feature-area 

method 

Step 1:       Initialization  

1.1 
(𝑥𝑓(1), 𝑦𝑓(1)) = (50,25), 𝑉𝑓(1) = 0,𝑊𝑓(1) = 0, 𝛽𝑑 = 0,  𝑆𝑑 =

400, (𝑥𝑢0, 𝑦𝑣0) = (160,120)  and the total   time steps  𝑡𝑡𝑜𝑡𝑎𝑙=1000 

1.2 for 𝑡 =1: 𝑡𝑡𝑜𝑡𝑎𝑙 

Step 2:         Object detection  

2.1 
According to the ball’s projection in the pixel frame, one obtains 𝑆 and  

(𝑥𝑢, 𝑦𝑣) 

Step 3:       Calculate the velocities of follower   

3.1          if 𝑆(𝑡) = 𝑆𝑑 && 𝛽(𝑡) = 𝛽𝑑  

               𝑉𝑙(𝑡) ← 0, 𝑉𝑟(𝑡) ← 0; 

         else  

                 Calculate 𝑉𝐹(𝑡) and 𝑑𝑣(𝑡) with equation (2-6); 

                 𝑉𝑙(𝑡) ← 𝑉𝐹(𝑡) + 𝑑𝑣(𝑡)； 

                    𝑉𝑟(𝑡) ← 𝑉𝐹(𝑡) − 𝑑𝑣(𝑡);   
          end  

 

3.2 

3.3 

3.4 

3.5 

3.6 

3.7 

Step 4:        Update the position of the follower    

4.1 
        𝛽(𝑡 + 1) = 𝛽(𝑡) +

𝑉𝑟−𝑉𝑙

𝑏
 𝛿;      %𝛿 is the sampling time, b is the distance 

between the centers of the left wheel and right wheel 

        𝑥𝑓(𝑡 + 1) = 𝑥𝑓(𝑡) +
𝑉𝑟+𝑉𝑙

2
 cos (𝛽(𝑡 + 1))𝛿; 

        𝑦𝑓(𝑡 + 1) = 𝑦𝑓(𝑡) +
𝑉𝑟+𝑉𝑙

2
 sin (𝛽(𝑡 + 1))𝛿; 

4.2 

4.3 

Step 5:        Update the bearing angular 𝛽(𝑡 + 1) 

5.1         if (𝑥𝑢, 𝑦𝑣)= (𝑥𝑢0, 𝑦𝑣0) 
5.2                 𝑉𝑐𝑝 ← 0, 𝑉𝑐𝑡 ← 0; 

5.3          else   

5.4                  𝑉𝑐𝑝 ← 𝑒𝑥𝑝𝐺𝑎𝑖𝑛 + 𝑒𝑥̇𝑑𝐺𝑎𝑖𝑛 ;                                           

5.5                  𝑉𝑐𝑡 ← 𝑒𝑦𝑝𝐺𝑎𝑖𝑛 + 𝑒𝑦̇𝑑𝐺𝑎𝑖𝑛; 
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5.6          end  

5.7          𝛽(𝑡 + 1) =  𝛽(𝑡) + 𝑉𝑐𝑝𝛿; go to back step 2 

 end 

 

The result of the simulation is shown in Figure 5. In order to simulate the real scenario, an 

arbitrary trajectory of the leader is created using the smooth-turn mobile model [10] in Figure 

4 . The starting points of the leader target and follower robot are (51, 26) and (51, 25). As 

shown in Figures 4, 5, although the follower follows the ball to move, the follower cannot 

achieve the desired tracking performance. The bearing angle 𝛽 (𝑡) is more than 0.5 in the last 

part of the simulatition. In the implementation of Pixy, some defects of location-feature-area 

are observed: 1) It cannot estimate the relative position between the camera and the leader ball, 

and such it cannot implement an advanced controller to improve the performance of leader-

follower tracking proplem.  2) The camera cannot distinguish the detected target from objects 

with a similar color. As a result, the camera may lose the identified target easily. Sometimes,  

 

 

Figure 4 The trajectories of follower and leader. The follower tracks the leader using the 

location-feature-area method.  
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Pixy may draw the target with noise and then calculate the area of contour in a wrong way (see 

Figure 6). Due to these defects, this algorithm does not perform well.    

 

Figure 6 Target detection in Pixy. The ball is the detected target and the rectangle is noise. 

(a) The noise is identified as a target. (b) The ball and noise are identified as a target. 

 

Figure 5 Simulation result. 𝑽𝑭 is the follower’s velocity. 𝒙𝒖 is the position of the ball in the 

camera view. 𝜷 is the beading angular between the camera and the heading of the robot. 
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 2.4 The Location-Feature-Position Method 

 This section reviews and analyzes the location-feature-position method. In this 

algorithm [6], the altitudes of three features are not equal to zero in the camera coordinate, the 

height of one feature must be positive in the camera coordinate, and these features are not on 

one perpendicular plane of the follower robot’s motion plane. Also, the camera must always 

detect three separate features.  According to the camera projection model and geometric 

analysis between the leader, camera and the desired position of the follower [8], the following 

formation can calculate the bearing angular 𝛽 between the headings of the follower robot and 

the leader target:  

 𝑎𝑖𝑗𝑠𝑖𝑛∆ + 𝑏𝑖𝑗𝑐𝑜𝑠∆= 𝑐𝑖𝑗  (2-7) 

where   

∆ =  −𝜑 + 𝜑∗ + 𝛽 

  𝑎𝑖𝑗 = −𝑥𝑖𝑥𝑗
∗ − 𝑦𝑖𝑦𝑗

∗ + 𝑦𝑗𝑦𝑖
∗ + 𝑥𝑗𝑥𝑖

∗ 

 𝑏𝑖𝑗 = −𝑥𝑖𝑦𝑗
∗ + 𝑦𝑖𝑥𝑗

∗ − 𝑦𝑗𝑥𝑖
∗ + 𝑥𝑗𝑦𝑖

∗ 

     𝑐𝑖𝑗 = −𝑥𝑖𝑦𝑗 + 𝑦𝑖𝑥𝑗 − 𝑥𝑖
∗𝑦𝑗

∗ + 𝑦𝑖
∗𝑥𝑗
∗  (2-8) 

𝜑 is the bearing angular between the camera and the heading of the follower robot, 𝜑∗ is the 

desired bearing angular between the camera and the heading of the follower robot, 𝑥𝑖 =

𝑋𝑖

𝑍𝑖
, 𝑦𝑖 =

𝑌𝑖

𝑍𝑖
 𝑎𝑛𝑑 (𝑋𝑖, 𝑌𝑖 , 𝑍𝑖)  is the position of one feature 𝑄𝑖  in the camera frame, 𝑥𝑖

∗ =

𝑋𝑖
∗/𝑍𝑖

∗, 𝑦𝑖
∗ = 𝑌𝑖

∗/𝑍𝑖
∗  and (𝑋𝑖

∗, 𝑌𝑖
∗, 𝑍𝑖

∗) is the desired position of the feature 𝑄𝑖  in the camera 

frame, 𝑥𝑗 =
𝑋𝑗

𝑍𝑗
, 𝑦𝑖 =

𝑌𝑗

𝑍𝑗
 𝑎𝑛𝑑 (𝑋𝑗 , 𝑌𝑗 , 𝑍𝑗) is the position of one feature 𝑄𝑗 in the camera frame, 

𝑥𝑗
∗ = 𝑋𝑗

∗/𝑍𝑗
∗, 𝑦𝑗

∗ = 𝑌𝑗
∗/𝑍𝑗

∗ and (𝑋𝑗
∗, 𝑌𝑗

∗, 𝑍𝑗
∗) is the desired position of the feature 𝑄𝑗 in the camera 

frame. When the number of features is 3, the following formation can be obtained from (2-1): 

 [
𝑠𝑖𝑛∆
𝑐𝑜𝑠∆

] = (𝐶𝑇𝐶)−1𝐶𝑇𝐷 (2-9) 

where  
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  𝐶 = [
𝑎12 𝑏12
𝑎13 𝑏13
𝑎23 𝑏23

] , 𝐷 = [

𝑐12
𝑐13
𝑐23
] (2-10) 

According to equation (2-3), the bearing angular 𝛽 is 

 𝛽 = 𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛∆, 𝑐𝑜𝑠∆) + 𝜑 − 𝜑∗ (2-11) 

As the camera cannot measure the location error (𝑋𝑒 , 𝑌𝑒) between the current location and 

desired location of the follower robot, the paper [8] defines new variables (xe, ye) =

(𝑋𝑒/𝑍𝑙 , 𝑌𝑒/𝑍𝑙)  where 𝑍𝑙  is the altitude of one feature in the camera feature. (xe, ye)  is 

measureable through the camera projection model. In the location-feature-position method, any 

one feature of the three features can be chosen as the position of the leader. The target feature 

is denoted as 𝑄1(𝑋1, 𝑌1, 𝑍1). Through the geometric analysis [8], (xe, ye) is calculated by the 

following equation: 

 [
𝑥𝑒
𝑦𝑒
] = 𝑅(𝛽) [

𝑥𝑑
𝑦𝑑
] + 𝑅(𝜑) [

𝑥1
𝑦1
] (2-12) 

where 𝑥𝑑 =
𝑋𝑑

𝑍1
,  𝑦𝑑 =

𝑌𝑑

𝑍1
 and (𝑋𝑑, 𝑌𝑑) is the desired position of the follower corresponding to 

the leader; 𝑥1 =
𝑋1

𝑍1
, 𝑦1 =

𝑌1

𝑍1
; 𝑅() is a rotation matrix:[

cos () −sin ()
sin () cos ()

] .  The procedure of the 

leader-follower tracking system using the location-feature-position method is shown in Figure 

7. In this procedure, 𝑣𝑓 is the velocity of the follower, 𝑤𝑓 is the angular velocity of the follower, 

(𝑋𝑓 , 𝑌𝑓) is the position of the follower in the world coordinates, 𝑤𝑐 is the angular velocity of 

the camera, and 𝑒𝑥 is the error between the current position and the desired position of 𝑄1 at 

the horizontal direction in the pixel coordinates. The follower controller𝑓(𝑥𝑒 , 𝑦𝑒, 𝛽) and pan 

camera controller 𝐶(𝑒𝑥, 𝑤𝑓) are backstepping controller which builds a stabilizing controllers 

by a recursive method. 
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Figure 7 The diagram of the leader-follower tracking system using the location-feature-

position method. 

In order to simulate the leader-follower tracking system using the location-feature-

position method, we build the following codes to simulate in MATLAB. 

Step 1:          Initialization 

1.1 𝑋𝑑 = 0.5, 𝑌𝑑 = 0.3, 𝑣𝑓 = 0,𝑤𝑓 = 0, 𝑋𝑓 = 49.50, 𝑦𝑓 = 24,𝑚1 
∗ = 419.299 , 

the total   time steps   𝑡𝑡𝑜𝑡𝑎𝑙 = 1000 , 𝜑∗ =
𝜋

6
, ; the orientation angular of the 

follower  𝑓𝑑 = 𝑝𝑖/2 

Note: 𝑚1 
∗  is the desired position of the feature 𝑄1in the pixel coordinates; 

 for 𝑡 =1: 𝑡𝑡𝑜𝑡𝑎𝑙 
Step 2:         Object detection  

2.1       𝛽 ← 𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛∆, 𝑐𝑜𝑠∆) + 𝜑 − 𝜑∗ 
2.2       [

𝑥𝑒
𝑦𝑒
] ←  𝑅(𝛽) [

𝑥𝑑
𝑦𝑑
] + 𝑅(𝜑) [

𝑥1
𝑦1
] 

2.3       𝑒𝑥 ← 𝑚1 −𝑚1 
∗ ; % 𝑚1 is the position of feature 𝑄1 at the horizontal                              

direction of the pixel coordinates.                 

Step 3:          Update the position of the follower    

3.1       𝑣𝑓 , 𝑤𝑓 ← 𝑓(𝑥𝑒 , 𝑦𝑒, 𝛽); 

3.2       𝑓𝑑 ← 𝑓𝑑𝑝𝑟𝑒 + 𝑤𝑓𝛿 ; %𝛿 is the sampling time and 𝛿 = 0.1𝑠, 𝑓𝑑𝑝𝑟𝑒 is          

     the 𝑓𝑑 at the last step time.             

3.3       𝑋𝑓 ← 𝑋𝑓𝑝𝑟𝑒 + v𝑓cos (𝑓𝑑)𝛿 ; % 𝑋𝑓𝑝𝑟𝑒 is the 𝑋𝑓 at the last step time; 

3.4       𝑌𝑓 ← 𝑌𝑓𝑝𝑟𝑒 + v𝑓sin (𝑓𝑑)𝛿 ; % 𝑌𝑓𝑝𝑟𝑒 is the 𝑌𝑓 at the last step time; 

Step 4:          Update the bearing angular 𝜑 

4.1       𝑤𝑐 ← 𝐶( 𝑒𝑥, 𝑤𝑓) 

4.2       𝜑 ← 𝜑𝑝𝑟𝑒 +𝑤𝑐𝛿 ; % 𝜑𝑝𝑟𝑒 is the 𝜑 at the last step time; 

4.3       Go back step 2 

 end 
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As shown in Figures 8 and 9, the errors xe, ye tend to become zero, and the follower robot 

tracks the leader target well. To compare it with the location-feature-area method, the location-

feature-position method can measure the bearing angular β  and the relative position 

error (xe, ye) . Furthermore, the follower robot can track the leader target by a relative 

position(xd, yd).  In addition, an advanced controller for the leader-follower tracking system is 

built using the bearing angle β and position error(xe, ye).  

In consideration of the requirements of features, three feature were used on the leader 

robot. If these features are small ones, the camera on the drone cannot catch them. If the features 

are large ones, they become close to each other and hence the camera cannot distinguish them 

as three separate features. Moreover, when we implement this method on a drone and a robot, 

it is possible that the height of one feature is zero in the camera frame.  In this case, the camera 

cannot measure the position of the leader. As such, it’s difficult to implement the leader-

follower tracking system using the method location-feature-position for our drone-robot 

tracking problem. 

Figure 8 Trajectories of the follower and leader. 



15 

 

2.5 Conclusions  

 The location-feature-area method uses the area of one ball and the bearing angle 𝛽 to 

scale the leader target’s location in the camera frame to address the leader-follower trcking 

problem. However, the relative position of the follower and leader cannot be obtained. The 

location-feature-position method uses three features to calculate the target’s relative position. 

Due to the requirement of three features, it is still unrealistic to implement in our research.  

Therefore, it is necessary to find a new effective approach to tracking using camera vision. The 

method can provide the accurate relative position of a detected object corresponding to the 

camera. Meanwhile, the approach only needs to use one camera and one feature. In this thesis, 

we use one camera and one feature to locate the target and then build a controller to address 

the leader- follower tracking problem. In Chapter 3, we describe how to locate a target using 

one camera and one ball.  

 

  

Figure 9 Simulation result. 𝒆𝒙 is the image error. 𝒙𝒆 and 𝒚𝒆 are the formation error. 
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CHAPTER 3 

LEADER-FOLLOWER TRACKING ALGORITHM BASED ON A SINGLE SPHERE 

FEATURE 

3.1 Introduction  

In this section, we build a leader-follower tracking system with one camera installed on 

the follower and one sphere placed on the leader.  In this tracking system, the leader’s position 

need to be measured using a leader-follower tracking algorithm. Through the camera 

measurement and the geometry analysis between the follower and the leader, we can obtain the 

leader’s location. Based on the estimated leader’s position, we can build a control system on 

the follower to track the leader. As shown in Figure 10, we expect the follower to track the 

leader with the distance L and bearing angular λ. L is the distance between the camera’s center 

𝑂𝑙  and the sphere’s center Oc. λ is the bearing angular between the heading of the follower and 

Oc𝑂𝑙. In order to keep the feature in the camera view, we also build a P-controller for a pan 

camera which just moves on its pan direction.  

 

Figure 10 The formation of leading-follower tracking.  

system. 
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 In this section, we first show how to use one camera to measure the sphere’s relative 

position with respect to the follower and calculate the bearing angle 𝛽 between the directions 

of the follower and the leader. Then, we build P-controllers that allow the follower to track the 

leader based on parameters that the camera measures.   

3.2 Estimation of Sphere’s Position in the Camera Coordinate System  

In this section, we focus on the procedure to measure the leader’s position using the 

camera vision in the camera’s coordinates. First, we show the projection of a sphere on the 

image plane. Then we briefly describe the relationship between the image coordinate and the 

camera coordinate and introduce the procedures to transfer the sphere’s location from the image 

coordinate to the camera coordinate. 

3.2.1 Projection of a Sphere on the Image Plane 

Figure 11 shows the projection of a sphere on the image plane, as marked in yellow. In 

fact, the projection is an ellipse which is the intersection plane of the image plane and the green 

cone. In this figure, 𝑂𝑠  is the sphere’s center with location (𝑋𝑠, 𝑌𝑠 , 𝑍𝑠)  in the camera’s 

coordinate. 𝑅𝑠 is the radius of the sphere, and 𝛾 is the bearing angle between the vector 𝑂𝑐𝑂𝑠 

and the principal axis 𝑋𝑐, where 𝑂𝑐 is the optical center.  

As shown in Figure 10, the outline of the sphere’s projection (yellow ellipse) is the 

projection of the green circle, which is the intersection of the sphere and the green cone tangent 

to the sphere. In paper [11], the ellipse is expressed by the following function: 

  (
𝑥

𝑎
)
2

+ (
𝑦

𝑏
)
2

= 1 (3-1) 

 Where 𝑎 ≈
𝑍𝑠

𝑅𝑠
, 𝑏 ≈

𝑍𝑠

𝑅𝑠
cos (𝛿). The area A of the ellipse is 𝐴 = 𝜋𝑎𝑏. 
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Next, let us show the calculation of the sphere’s center location (𝑋𝑠,𝑌𝑠, 𝑍𝑠).  

3.2.2 Relationship between the Image Coordinates and the Camera Coordinates 

Suppose (𝑚𝑖 , 𝑛𝑖) is the location of a point in the image coordinate, then it has the 

following relationship with its corresponding location (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) in the camera coordinate 

𝑋𝑐𝑌𝑐𝑍𝑐 (see the Figure 11), according to the camera projection model: 

 𝑚𝑖 = 𝑓𝑦
𝑌𝑖

𝑋𝑖
+𝑚𝑜   (3-2) 

 𝑛𝑖 = 𝑓𝑧
𝑍𝑖

𝑋𝑖
+ 𝑛𝑜  (3-3) 

Where 𝑓𝑦 = 𝑓/𝛼𝑢 and 𝑓𝑧 = 𝑓/𝛼𝑣, 𝑓 is the focal length, 𝛼𝑢, 𝛼𝑣 are the pixel dimensions, and 

(𝑚𝑜, 𝑛𝑜) is the location of the principal point of the camera in the image coordinates.  

3.2.3 Estimation of the Sphere Position from an Image 

The procedures introduced in paper [11]  estimates the location of sphere’s center 

(𝑋𝑠, 𝑌𝑠, 𝑍𝑠) in the camera coordinates are shown as follows.  

Figure 11 Projection of a sphere on the image plane.  
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1) Estimate the center of the sphere’s projection(𝑚𝑠, 𝑛𝑠), and its area A. 

2) According to equations 3-2,3-3, it’s easy to obtain  

 
𝑌𝑠

𝑋𝑠
=

ms−mo

𝑓𝑦
   (3-4) 

 
𝑍𝑠

𝑋𝑠
=

𝑛𝑠−𝑛𝑜

𝑓𝑧
   (3-5) 

3) Denote   
𝑌𝑠

𝑋𝑠
 as 𝑦𝑠, and 

𝑍𝑠

𝑋𝑠
 as 𝑧𝑠, then the bearing angle 𝛾 = −𝑎𝑟𝑐𝑡𝑎𝑛√𝑦𝑠2 + 𝑧𝑠2. 

4) Calculate the area A of the sphere’ ellipse projection by 𝐴 = 𝑁/(𝑓𝑌𝑓𝑧), where N is the 

number of pixels in this area.  

5) Compute 𝑋𝑠 = 𝑅𝑠√𝜋/(𝐴𝑐𝑜𝑠𝛾). Then 𝑌𝑠 = 𝑦𝑠𝑋𝑠, 𝑍𝑠 = 𝑧𝑠𝑋𝑠. 

 

Figure 12 Leader-follower formation. 
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Table 1 Definitions of Notations used in Figure 12 

  
𝑌𝑙  the heading of the leader  
𝑌𝑓, 𝑌𝑓

∗ the heading of the follower at  𝑇0, 𝑇1 

Of  the center of the follower  
𝑂𝑐,𝑂𝐶

∗  the optical center of the camera 
d the distance between Of and 𝑂𝑐  
𝑂𝑙              the center of the leader at 𝑇0 

𝑂𝑙
∗  the center of the leader at 𝑇1 

𝑂𝑋𝑌 The world coordinates 

𝑂𝑐𝑋𝑓𝑌𝑓  robot frame of the follower at 𝑇0 

𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗ robot frame of the follower at 𝑇1 

𝑂𝑐𝑋𝑐𝑌𝑐   camera frame at 𝑇0 
𝑂𝑐
∗𝑋𝑐

∗𝑌𝑐
∗  camera frame at 𝑇1 

𝛼0 , 𝛼1   the orientation of the camera corresponding to the follower at time 𝑇0 
and 𝑇1 

𝑂𝑙𝑌𝑙  the direction of the leader 
𝑂𝑙𝑂𝑙

∗  Direction vector of the leader’s motion 

𝑋𝑐0, 𝑌𝑐𝑜 , 𝑍𝑐0  the camera coordinate of  𝑂𝑙at 𝑇0 
𝑋𝑐1, 𝑌𝑐1, 𝑍𝑐1  the camera coordinate of  𝑂𝑙

∗at 𝑇1 
  

 

3.3 Estimation the Bearing Angle 𝛽 and the Relative Position of the Sphere 

In this section, we introduce the process to estimate the bearing angle 𝛽 and the relative 

position of the sphere in the follower’s coordinates. In order to measure 𝛽, we need to measure 

the relative position of the sphere and transfer the positions of the sphere at time 𝑇1 and 𝑇0 into 

the follower’s coordinate 𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗ (see Figure 12). 

3.3.1Transfer Sphere’s Position at Time 𝑇0 to the Follower’s Coordinates 𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗ 

In this section, we show the transformation of the sphere’s location from the image 

coordinates to the follower’s coordinate 𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗ at 𝑇0. Denote the location of the sphere and 

its area obtained by the camera at time 𝑇0 as (𝑚𝑡0, 𝑛𝑡0) and 𝐴0, respectively. According to 

Section 3.2, we can get the sphere’s center location (𝑋𝑐0, 𝑌𝑐0, 𝑍𝑐0) in the camera coordinates. 
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In order to transfer (𝑋𝑐0, 𝑌𝑐0) to the coordinate 𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗, we first need to transfer it to the   

coordinate 𝑂𝑐𝑋𝑓𝑌𝑓. This can be realized through coordinate space transformation as follows.  

 [
𝑋𝑐0
′

𝑌𝑐0
′ ] = 𝑅(𝜋/2 − 𝛼0) [

𝑋𝑐0
𝑌𝑐0
]   

Where 𝛼0  is the bearing angle among 𝑋𝑐  and the direction 𝑌𝑓  at time 𝑇0 , (𝑋𝑐0
′ , 𝑌𝑐0

′ ) is the 

location of the sphere’s center in 𝑂𝑐𝑋𝑓𝑌𝑓. R is the rotation matrix shown as follows                                              

 𝑅(∙) = [
cos(∙) − sin(∙)

sin(∙) cos(∙)
] (3-7) 

Now we can calculate the location of the sphere’s center in the coordinate 𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗. In order to 

achieve this, we first need to obtain the moving direction of the follower from 𝑇0 to 𝑇1, which 

is approximated as the direction of the vector 𝑂𝑐𝑂𝑐
∗  in 𝑂𝑋𝑌 (see Figure 12).  Suppose the 

velocity and angle velocity of the follower are 𝑣 and 𝑤, which can be obtained by encoders.  

The direction angular of the follower in 𝑂𝑋𝑌 is 𝜃. Then, 𝑂𝑐𝑂𝑐
∗ = (∆𝑥, ∆𝑦) can be obtained by 

following equations 

 ∆𝑥 = (𝑣𝑐𝑜𝑠(𝜃 + 𝑤∆𝑇) + 𝑑𝑤𝑐𝑜𝑠(𝜃 + 𝑤∆𝑇)) ∙ ∆𝑇  (3-8)                                         

 ∆𝑦 = (𝑣𝑠𝑖𝑛(𝜃 + 𝑤∆𝑇) + 𝑑𝑤𝑠𝑖𝑛(𝜃 + 𝑤∆𝑇)) ∙ ∆𝑇  (3-9)                

where ∆𝑇 = 𝑇1 − 𝑇0 and 𝑑 is the distance between the center of the follower and the camera. 

Then we can get the location (𝑋0, 𝑌0) of sphere’s center 𝑂𝑙 in the coordinate 𝑂𝑐
∗𝑋𝐹

∗𝑌𝑓
∗as follows 

 [
X0
Y0
] = R(π/2 − α0 −𝑤∆𝑇) [

Xc0
Yc0
] − R(𝜋/2 − 𝜃 − 𝑤∆𝑇) [

∆𝑥
∆𝑦
] (3-10)                                                   

3.3.2 Transfer Sphere’s Location at Time 𝑇1 To The Follower’s Coordinate 𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗ 

In this section, we introduce the transformation of the sphere’s location 𝑂𝑙 from the 

image coordinate to the follower’s coordinate 𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗. Denoting the position of the sphere and 

its area obtained by the camera at time 𝑇1 as (𝑚𝑡1, 𝑛𝑡1) and  𝐴1 respectively, we can follow the 

procedures introduced in Section 3 to calculate the sphere’s center location (𝑋𝑐1, 𝑌𝑐1, 𝑍𝑐1). Then 

the sphere’s center location in the follower’s coordinate 𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗, denoted as (𝑋1, 𝑌1), can be 
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obtained through simple coordinate space transformation. The mathematical equation is shown 

as follows. 

 [
X1
Y1
] = R(𝜋/2 − 𝛼1) [

Xc1
Yc1
] (3-11) 

where 𝛼1 is the bearing angle between axes 𝑋𝑐
∗ and 𝑌𝑓

∗ at time𝑇1 (see Figure 12). 

3.3.3 Estimation of the Bearing Angle 𝛽  

Having obtained the location of the sphere expressed in the follower’s coordinate 

𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗  at  𝑇0  and  𝑇1 , we can now calculate the bearing angle 𝛽  between the follower’s 

direction 𝑌𝑓
∗ and the motion vector 𝑂𝑙𝑂𝑙

∗ of the leader, using the following equation:         

    𝛽 =

{
 
 
 
 

 
 
 
 arctan (

𝑋1−𝑋0

𝑌1−𝑌0
)                       𝑖𝑓 𝑌1 − 𝑌0 > 0                                 

 arctan (
𝑋1−𝑋0

𝑌1−𝑌0
) + 𝜋                𝑖𝑓 𝑌1 − 𝑌0 < 0 and 𝑋1 − 𝑋0 ≥ 0 

arctan (
𝑋1−𝑋0

𝑌1−𝑌0
) − 𝜋               𝑖𝑓 𝑌1 − 𝑌0 < 0 and 𝑋1 − 𝑋0 < 0 

  +
𝜋

2
                                           𝑖𝑓 𝑌1 − 𝑌0 = 0 and 𝑋1 − 𝑋0 > 0 

−
𝜋

2
                                            𝑖𝑓 𝑌1 − 𝑌0 = 0 and 𝑋1 − 𝑋0 < 0

0                                                 𝑖𝑓 𝑌1 − 𝑌0 = 0 and 𝑋1 − 𝑋0 > 0

  (3-12)  

3.4 Controller Design  

 In this section, we design P-controllers for the leader-follower tracking system using 

camera vision. As shown in Figure 12, we expect the follower tracks the leader with the 

distance L and bearing angular λ. 𝐿 is the distance between the camera’s center 𝑂𝑙  and the 

sphere’s center Oc. λ is the bearing angular between the heading of the follower and Oc𝑂𝑙. In 

the process of leader -follower tracking system, the follower need to adjust its velocity 𝑣𝑓 and 

angular velocity 𝑤𝑓 to keep itself at the desired position corresponding to the leader. The driver 

model of the robot can influence how to adjust 𝑣𝑓 and 𝑤𝑓 so that it is necessary to comprehend 

the kinematics of the follower robot. In this project, we apply the controller algorithm on a 
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differential driver robot with DC motors. Therefore, Section 3.4.1 introduces the differential 

drive kinematics and DC motor model. Then, Section 3.4.2 focuses on the P-controller design.  

3.4.1 The Differential Drive Kinematics and DC Motor Model 

The differential drive kinematics model [13] is: 

 𝑤(𝑡) =
𝑣𝑟(𝑡)−𝑣𝑙(𝑡)

𝑏
  (3-13) 

 𝑣(𝑡) =
𝑣𝑟(𝑡)+𝑣𝑙(𝑡)

2
  (3-14) 

where 𝑤(𝑡) is the angular velocity of the robot, 𝑣(𝑡) is the velocity of the robot, 𝑣𝑟(𝑡) and 

𝑣𝑙(𝑡) are the velocity of the wheel at the right side and left side, b is the distance from the left-

side wheel to the right-side wheel. According to Equations 3-13 and 3-14, we can obtain the 

following equations: 

 𝑣𝑟(𝑡) =
2𝑣(𝑡)+𝑏𝑤(𝑡)

2
   (3-15) 

 𝑣𝑙(𝑡) =
2𝑣(𝑡)−𝑏𝑤(𝑡)

2
   (3-16) 

Assuming the radius of the wheel is 𝑅, we can get the angular velocity of the wheels are: 

 𝑤𝑟(𝑡) =
𝑣𝑟(𝑡)

𝑅
   (3-17) 

 𝑤𝑙(𝑡) =
𝑣𝑙(𝑡)

𝑅
   (3-18) 

where 𝑤𝑟(𝑡) is the angular velocity of the wheel at the right side, 𝑤𝑙(𝑡) is the angular velocity 

of the right side.  

The DC motor model [14] is 

   𝑣𝑚 = 𝑒 + 𝑅𝑎𝑖𝑎 + 𝐿𝑎
𝑑𝑖𝑎

𝑑𝑡
  (3-19) 

 𝐽
𝑑𝑤𝑚

𝑑𝑡
+ 𝐵𝑙𝑤𝑚 = 𝑇𝑒 − 𝑇𝑙  (3-20) 

 𝑇𝑒 = 𝐾𝑏𝑖𝑎  (3-21) 

where 𝑣𝑚 is the input voltage of the motor, 𝑒 is the induced emf, 𝑅𝑎 is the resistance of the 

motor, 𝑖𝑎 is the current of the motor, 𝐿𝑎is a self –inductance, 𝑤𝑚 is the motor’s angular speed, 
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J is the inertia moment of the motor, 𝐵𝑙  is the viscous friction coefficient, 𝑇𝑒 is the air gap 

torque of the motor, 𝑇𝑙 is the lode toque, 𝐾𝑏 is the induced emf constant. To transform equation 

(3-19, 3-20) into their Laplace equations, we can get the following equations   

 𝐼𝑎(𝑠) =
𝑉𝑚(𝑠)−𝐾𝑏𝑤𝑚(𝑠)

𝑅𝑎+𝑠𝐿𝑎
 (3-22) 

 𝑤𝑚(𝑠) =
𝐾𝑏𝐼𝑎(𝑠)−𝑇𝑙(𝑠)

(𝐵𝑙+𝑠𝐽)
 (3-23) 

Formulations 3-22 and 3-23 indicate that the voltage of motor can control the angular velocity 

of a wheel. In fact, PWM (pulse-width modulation) is often used to adjust the voltage of a 

motor. Therefore, we can use the value of PWM to control the angular velocity of a motor. 

Since the angular velocity wl, 𝑤𝑓  decide the velocity and direction of the follower, we can 

control the value of PWM to control the follower’s movement.  

  

3.4.2 Control Design for the Follower and Camera  

Our goal is that the follower tracks the leader with the desired bearing 𝜆𝑑 and desired 

length 𝐿𝑑. According to function 3-11, the camera measures the sphere’s position (𝑋(𝑘), 𝑌(𝑘)) 

at time 𝑘 in the follower’s coordinate. The distance 𝐿(𝑘) between the camera and the sphere is: 

 𝐿(𝑘) = √𝑋2(𝑘) + 𝑌2(𝑘)
2   (3-24) 

The bearing angular 𝜆(𝑘) between the heading of the follower and the camera’s direction is: 

 𝜆(𝑘) = 𝑎𝑡𝑎𝑛2(𝑋(𝑘), 𝑌(𝑘))  (3-25) 

Setting the setpoint (𝐿𝑑, 𝜆𝑑), we can build a P-controller algorithm for leader-follower tracking 

system:                     

  𝑣𝑓(𝑘) = 𝑣𝑔𝑎𝑖𝑛(𝐿(𝑘) − 𝐿𝑑)                                             (3-26) 

𝑤𝑓(𝑘) = 𝑤𝑔𝑎𝑖𝑛(𝜆𝑑 − 𝜆(𝑘))                                            (3-27) 

where 𝑣𝑔𝑎𝑖𝑛 and 𝑤𝑔𝑎𝑖𝑛 are the gain of the P-controller. According to Equations from 3-13 to 

3-18, we obtain the desired angular velocities 𝑤𝑟(𝑘), 𝑤𝑙(𝑘) of the follower’s wheels. The 
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current angular velocities 𝑤𝑟𝑐(𝑘), 𝑤𝑙𝑐(𝑘) are measured by encoders installed on the shaft of 

the motors. Likewise, we design a new P control based on the error between 𝑤𝑟 , 𝑤𝑙   and 

𝑤𝑟𝑐, 𝑤𝑙𝑐 in order to make the rotational speeds of motors keep pace with their desired rotational 

speeds.  The P-controller algorithm for motors is: 

 𝑝𝑤𝑚𝑟(𝑘) = 𝑝𝑟𝑔𝑎𝑖𝑛(𝑤𝑟(𝑘) − 𝑤𝑟𝑐(𝑘)) (3-28) 

 𝑝𝑤𝑚𝑙(𝑘) = 𝑝𝑙𝑔𝑎𝑖𝑛(𝑤𝑙(𝑘) − 𝑤𝑙𝑐(𝑘)) (3-29) 

where 𝑝𝑟𝑔𝑎𝑖𝑛 and 𝑝𝑙𝑔𝑎𝑖𝑛 are the gains of the P-controller. Then we obtain the input PWM of 

the motors: 

𝑃𝑊𝑀𝑟(𝑘) = 𝑃𝑊𝑀𝑟(𝑘 − 1) + 𝑝𝑤𝑚𝑟  (𝑘)                                     (3-30) 

𝑃𝑊𝑀𝑙(𝑘) = 𝑃𝑊𝑀𝑙(𝑘 − 1) + 𝑝𝑤𝑚𝑙 (𝑘)                                      (3-31) 

where 𝑃𝑊𝑀𝑟 and 𝑃𝑊𝑀𝑙  are the input PWMs of motors at the time k, 𝑃𝑊𝑀𝑟 (𝑘 −

1) and 𝑃𝑊𝑀𝑙(𝑘 − 1) are the input PWM of motors at the time 𝑘 − 1. In the whole process of 

leader-follower tracking system, the camera needs to track the sphere on the leader and keep 

the ball in the camera view. Otherwise, the camera will lose the target and cannot estimate the 

relative position of the leader. As a result, it is necessary to build a controller to make the 

camera keep pace with the ball’s movement.  We also build a P-controller algorithm for the 

camera which moves on its pan direction. The desired position of the ball is the center point of 

the camera view in the pixel coordinates. Denote the center point of the camera view is 𝑚𝑜 at 

the pan direction of the camera. The P-control of the camera is designed as follows: 

 𝑤𝑐(𝑘) = 𝑐𝑔𝑎𝑖𝑛(𝑚𝑜 −𝑚(𝑘))  (3-32) 

where 𝑐𝑔𝑎𝑖𝑛 is the feedback gain, 𝑚(𝑘) is the position of the ball in the camera frame at the 

time k, and 𝑤𝑐(𝑘) is the angular velocity of the camera. 

3.5 Conclusion 

 In this chapter, we apply one camera and one ball to locate the leader’s position 

corresponding with the follower. Meanwhile, through transferring the positions of the leader 
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into the follower’s coordinates, we obtain the bearing angular 𝛽 between the headings of the 

follower and leader. Then, we apply the information from the camera to build P-controllers for 

the leader-follower tracking system. In the next chapter, we focus on the simulation and 

implementation for leader-follower tracking system using camera vision. 
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CHAPTER 4 

SIMULATION AND IMPLEMENTATION   

  

In this section, we focus on the simulation and implementation of the leader-follower 

tracking system using camera vision. This section is organized as follows. Chapter 4.1 includes 

the procedure and results of simulation studies using MATLAB. Chapter 4.2 includes the 

hardware and software designs utilized in this research. Chapter 4.3 describe the procedure to 

detect an object using a Pi camera. Chapter 4.4 includes the procedure and results of the 

implementation for the leader-following tracking system.     

4.1 Simulation  

According to Chapter 3, we design a diagram in Appendix 1 to achieve the leader-

following tracking task using one camera and one ball. In this figure, (𝑥𝑓, 𝑦𝑓) is the position of 

the follower,  𝑒𝐿 = 𝐿𝑑 − 𝐿(𝑘), and   𝑒𝜆 = 𝜆𝑑 − 𝜆(𝑘) . Furthermore, to simulate the leader-

follower tracking system using one camera and one ball, we build the following codes to 

simulate in MATLAB. 

Step1: Initialization  

1.1 𝐿𝑑 = 1.414 𝑚, 𝜆𝑑 = 0.7 𝑟𝑎𝑑𝑖𝑎𝑛,𝑚0 = 243.942, 𝑛𝑜 = 158.441 

𝑓𝑦 = 497.157, 𝑓𝑧 = 498.684, 𝑅𝑠 = 0.06 𝑚 , 𝑣𝑓(1) = 0, 𝑤𝑓(1) = 0,  

𝑃𝑊𝑀𝑙(1) = 0,𝑃𝑊𝑀𝑟(1) = 0, 𝑥𝑓(1) = 50, 𝑦𝑓(1) = 25, total =1000 

𝜑(1) = 0 , 𝜃(1) = 𝜋/2; 

Note: R is the radium of the ball; 

1.2 For  𝑘 = 1 ∶ 𝑡𝑜𝑡𝑎𝑙 
Step 2:         Object detection  

2.1         The camera obtains the position (𝑚,𝑛) of the ball in the pixel  

        coordinate; 

2.2 The camera measures the ball’s position (𝑋𝑐0, 𝑌𝑐0, 𝑍𝑐0) in the camera   

        Coordinates  

          [
𝑋(𝐾)
𝑌(𝐾)

]𝑅(𝜋/2 − 𝜑(𝑘)) [
𝑋𝑐0
𝑌𝑐0
] 

         𝐿(𝑘) ←  √𝑋2(𝑘) + 𝑌2(𝑘)
2   

         𝜆(𝑘) ← 𝑎𝑡𝑎𝑛2(𝑋(𝑘), 𝑌(𝑘)) 

2.3 

2.4 

Step 3:          Calculate the velocity and angular velocity of the follower    

3.1         𝑒𝐿 ← 𝐿𝑑 − 𝐿(𝑘)  
        𝑒𝜆 ← 𝜆𝑑 − 𝜆(𝑘) 
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3.2        Through P-controller for the follower, calculate 𝑣𝑓 , 𝑤𝑓 

Step 4:          Update the position of the follower 

4.1        𝜃(𝑘 + 1) =  𝜃(𝑘) + 𝑤𝑓𝛿; % 𝛿 is the sampling time 

       𝑥𝑓(𝑘 + 1) ← 𝑥𝑓(𝑘) + v𝑓cos (𝜃(𝑘 + 1))𝛿 ; 

       𝑦𝑓(𝑘 + 1) ← 𝑦𝑓(𝑘) + v𝑓sin (𝜃(𝑘 + 1))𝛿 ;  

4.2 

4.3 

Step 5:          Update the bearing angular 𝜑 

5.1       𝑒𝑚 ← 𝑚𝑜 −𝑚 

      𝑤𝑐 ← 𝑒𝑚𝑐𝑔𝑖𝑎𝑛 

      𝜑(𝑘 + 1) ← 𝜑(𝑘) + 𝑤𝑐𝛿 ;  
      Go back step 2 

5.2 

5.3 

5.4 

 end 

 As shown in Figure 13, the follower tracked the leader to move. In this simulation, the 

trajectory of the leader robot is created by the smooth-turn model [10]. The initial position and 

heading angle of the follower robot are (50,25) and 𝜋/2. The initial position and heading angle 

of the sphere ball are (51,26) and 𝜋/2.  Figure 14 shows that 𝑒𝐿, 𝑒𝜆 and m are close to zero, 

the camera tracks the ball and keep the ball around the center of the camera view. As a result, 

the follower tracks the leader at the desired position.  

 

 

 

Figure 13 The trajectories of the follower and leader. 
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4.2 Hardware and Software Designs 

This section introduces the hardware and software designs which are used in the 

implementation.  

4.2.1 Raspberry Pi 2 

Raspberry Pi 2 (see Figure 15) is a cheap and powerful microcontroller with a 900MHz 

quad-code CPU and 1 GB RAM. Raspberry Pi 2 has excellent capability to calculate data and 

deal with image information. Furthermore, Raspberry Pi 2 have a friendly development 

environment. Users can build a project in the Linux system of Raspberry using Pi 2 Python, c, 

c++ and Java.  Raspberry Pi 2 also supports the openCV library which is an open source library 

for computer vision and machine learning. In addition, there are 4 USB ports and 40 GPIO pins 

on Raspberry Pi 2. These interfaces make Raspberry Pi 2 connect conveniently with other 

devices, such as camera, sensors. In this research, Raspberry Pi 2 is used to detect the target 

and locate the position of the target in the camera frame.  

Figure 14 Simulation result. 𝒆𝝀, 𝒆𝑳The formation error; L The relative distance between the 

camera and the ball; m the positon of the ball in the camera view. 
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4.2.2 Arduino UNO 

Arduino UNO is a user-friendly 

microcontroller built on the ship 

ATmega328P.  As shown in Figure 16, 

it just has 16 I/O pins which include 6 

PWM output and 16M clock speed. 

However, the UNO can work with lots 

of sensors and other devices through 

UART, I2C. To control motors’ speed, 

Arduino UNO sends a value in the range 

(0~255) to PWM output pin.  In addition, the PWM output from Arduino UNO is more stable 

than that from Raspberry Pi 2.  In the Arduino forum, there are rich materials to help people to 

study and use this microcontroller.  In this project, the UNO play a big role. It calculates the 

Figure 16 Arduino. 

Figure 15 Raspberry Pi 2. 
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wheels’ speed with encoders which are installed on the motors’ shafts. It calculates the target’s 

position for the adjustment of PWM output which decides the velocities of motors. It sends the 

angular velocity of the camera servo to 16 channel PWM module which keeps the camera to 

track the target.  

4.2.3 16 Channel PWM /Servo Shield 

As shown in Figure 17, it is a 16-channel PWM/Servo Shield. The shield assists 

microcontroller to control servos by a stable PWM output.  The 16 channel PWM /Servo Shield 

has the following advantages. It can control 16 channel and up to 992 servos using I2C. The 

shield is convenient to get commands from microcontrollers such as Arduino, Raspberry Pi 

through I2C. It can automatically control servos without keeping communication with 

microcontrollers so that microcontrollers can save time to execute other tasks.  In this project, 

the shield is used to control camera’s servo. The reason is Raspberry PI 2 cannot offer a stable 

PWM output, and Arduino needs to process data as fast as possible.  

  

 

Figure 17 16-channel PWM/Servo Shield. 
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4.2.4 PI Camera 

PI camera (see Figure 18) is an assistant device 

for Raspberry PI 2. The parameters of PI camera can be 

adjusted by Raspberry PI 2 though python command 

such as video formats, picture formats, and exposure 

modes. To compare with other webcams, PI camera is 

a cheaper and an excellent camera. The sensor 

resolution for a PI camera achieves up to 2592*1944, 

and its video modes can change in 1080p30, 720p60, and 640*480p60/90. PI camera is suitable 

to work with openCV and Raspberry PI 2. In this project, the PI camera catches the image of 

the target and sends the image information to Raspberry PI 2. 

4.2.3     Rover 5 Motor Driver Board 

As shown in Figure 19, it is a Rover 5 Motor Driver Board. The motor driver designed 

by Dagu can drive four motors with microcontrollers, such as Arduino, Raspberry Pi. The 

driver board can change the direction and speed of motors.  In this research, the driver board 

connects with Arduino to control the direction and speed of wheels.  

4.2.4 Lynxmotion Quadrature Motor Encoder 

Figure 19   Rover 5 Motor Driver Board 

Figure 18 Pi camera 
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As shown in Figure 20, it is a Lynxmotion Quadrature 

Motor Encoder. It includes two output signals. The encoder has 

100 cycles per revolution and 400 quadrature counts per 

revolution. In this research, the motor encoder accounts the speed 

of wheels and sends the speed data to Arduino to calculate the 

velocity and angular velocity of the follower robot. 

 

4.2.5 OpenCV 

OpenCV stands for Open Source Computer Vision Library, which includes 2500 

optimized algorithm on computer vision and machine learning. It supports the current main 

operation systems like Windows, Linux, and Mac OS. Meanwhile, it supports the following 

languages: C++, C, Python, Java and MATLAB. It is convenient for the user to use the 

algorithms of openCV on vision application so that users don’t need to build a complex 

algorithm on the computer vision and machine learning every time. Also, the openCV is a free 

software. In fact, many users and companies are using openCV to develop projects and 

applications such as robot’s navigation and face recognition. In this project, the openCV plays 

the main role to identify the sphere target from the camera view. The process of target detection 

will be described in the following section. 

4.3 Detecting the Target Using Raspberry Pi 2 and OpenCV 

This section focuses on the process of target detection using Raspberry Pi 2 and openCV. 

Raspberry Pi 2 receives image information from Pi camera and then calls for algorithms from 

openCV to implement these goals: color detection, smooth image, contours of images, shape 

recognition, locating the target’s center, and area calculation in the camera frame.  The 

remainder of this section elaborates this procedure.  

4.3.1 Color Detection 

Figure 20 Motor encoder 
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Color detection refers to distinguishing an object by color. Apparently, an image 

consists of color components. To detect a target with a special color, it should separate an image 

into color components and then select the detected color components. In this research, an image 

is recorded by a Pi camera and sent to Raspberry Pi in an array of color components. The color 

element is presented by RGB color model as shown in Figure 21.a. RGB stands for red, green, 

and blue. In RGB color model, any color component consists of the values of these three colors. 

RGB color model is used to display images on electronic devices, such as a computer, phone, 

and tablet. However, it is difficult for people to dictate the RGB value of a color component. 

Therefore, it needs to convert the color space of the image into HSV color space shown in 

Figure 21.b. HSV stands for hue, saturation and value. The HSV color model is converted from 

RGB color model. To compare it with RGB color model, it is easier for people to describe a 

color component in HSV color model. Likewise, this conversation from RGB to HSV makes 

the separation of color components easily.   

 

 

 

 

 

 

 

 

 

In the implementation, the detected color is red and its HSV range is from [105, 65, 65] 

to [125, 255, 255]. Furthermore, the image needs to be transformed from 3-dimension to 1-

dimension in order to reduce the calculation load to smoothen an image in next step. The pixel 

                            

                   (a) RGB color space.                   (b) HSV color space.  

      Figure 21 Illustration of RGB and HSV color space. 

 

                               



35 

 

color will be white in the detected HSV range, or the pixel color will be black. Therefore, the 

color image changes into a gray image. As shown in Figure 22, Our target is the red ball. The 

color in the detected range changes into white and other becomes black. Obviously, the color 

detection cannot distinguish the target from objects with the similar colors.  

  

4.3.2 Smooth image 

  As shown in Figure 22, the edges of the white blocks are irregular. Noises produce 

edges similar to a gear edge, and impacts correct measurement of the positions and areas of 

these blocks. Therefore, it is necessary to remove noises in the gray image. There are four 

Figure 22 Illustration of color detection. (a) The target ball and the noise rectangle in the 

normal picture. (b) The result of color detection. 

Figure 23 Illustration of Midian Filtering. The edges of blocks 
become smooth. 

(a) (b) 
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methods to reduce noise in openCV: averaging, Gaussian Filtering, Median Filtering, and 

Bilateral Filtering. In this research, the Median Filtering is chosen to blur an image and reduce 

noise. The result of the smoothened image in Median Filtering is shown in Figure 23. Clearly, 

from the comparison between Figure 22 and Figure 23, the edges of blocks in Figure 23 are 

very smooth. 

4.3.3 Contours in Images 

 Contours mean boundaries of the detected object. The contour is an essential 

requirement to recognize and analyze detected shapes in openCV. The method of contours is 

to distinguish while block from the black background. As shown in Figure 24, the contours 

present the shapes of the detected target and noise.  

4.3.4 Shape Recognition 

  The shape recognition is a useful approach to distinguish the detected target from noise.   

Although the contours of blocks have been drawn in Figure 24, it doesn’t yet distinguish the 

detected sphere ball from noise. As the contour of identified target is close to a circle, next step 

is to compare contours with a circle and then obtain the shape ratios, which means the unlike 

ratio between two shapes. The unlike ratio between two shapes. In this research, the contours 

with shape ratio less than 0.01 identify the targets to be detected. As shown in Figure 26, the 

shape ratio of the approximate circle is less than 0.01, and the shape ratio of noise is almost 

Figure 24 Illustration of contours in the image. (a) Picture from camera. (b) contours of 

objects. 

(a) (b) 
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0.1. Sometimes, noises cause objects to have similar shapes with the shape to be detected. It is 

difficult to select the target from noise just according to the shape ratio. The solution will be 

described in the following section.  

4.3.5 Position and Area of the Target  

Thought the algorithm of the image moments in the openCV library, the position and 

area of the contour are easy to be calculated.  We still need to eliminate some noise which is 

similar with the shape of the detected target. In fact, though color detection and shape 

recognition, the area of noise is almost less than that of the detected target. Therefore, the 

detected target can be enumerated by the areas of blocks.  

 

4.4 Implementation Result  

The section focuses on the implementation result of the leader-follower tacking system 

using one camera and one ball. In Chapter 3, the P-controllers of the follower and camera has 

been built. In Section 4.3, the approach of target detection has been described. According to 

the diagram of hardware (see Figure 26), we build and test the hardware system. The desired 

Figure 25 Illustration of shape recognition. The data (blue number) 

are the shape ratios of contours of blocks to a circle.  
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length 𝐿𝑑 is 60 cm, and the desired angular 𝜆𝑑 is zero. The trajectories of the follower and the 

ball are shown in Figure 27.  

Figure 27 The trajectories of the leader and follower. The red line is the 

trajectory. The red ball is the detected target. 

Figure 26 Illustration of the hardware connect in the implementation. 
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Figure 28 reports the implementation result. However, the follower tracks the ball to move and 

achieve the leader-follower tacking task using one camera and one ball. 

According to the Figure 28, the follower tracks the ball to move. But we need to adjust the 

feedback gains to improve the performance of the leader-follower tracking system. 

 

Figure 28 Implementation result. (a), (b) The formation error. The desired distance is o.6 m. 

the desired angle is zero. 

(a) 

(b) 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion  

 In this research, we developed a method to locate a sphere using camera vision. This 

approach is used to estimate the relative position and bearing angular between the headings of 

the leader and follower. This research also builds P-controllers to realize the leader-follower 

tracking task using camera vision. The simulation result validates our algorithm. Then, we 

implemented this algorithm in a real robot system. We develop a system for the target detection 

by Pi camera, Raspberry Pi 2 and openCV.  

 The results of the simulation and implementation indicate the viability of the location 

method using one camera and one sphere. Meanwhile, we used our location method and built 

a controller for leader-follower tracking system with reasonable performance. 

 Our location approach just uses one camera and one ball and can provide the relative 

position between the camera and detected target. It is convenient for users to apply this 

approach on the leader-follower tracking system.  

 

5.2 Future Work 

We need still to improve the performance of the leader-follower tracking system using 

camera vision. The authors will design an advanced controller to replace the simply P-

controller, such as the backstepping controller and adaptive controller, to achieve a better 

tracking performance. Finally, we achieve this task that drone tracks the robot on the ground 

as well as possible. 
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