

APPROVED:

Yan Wan, Major Professor
Xinrong Li, Committee Member
Shengli Fu, Committee Member and Chair of

the Department of Electrical
Engineering

Costas Tsatsoulis, Dean of the College of
Engineering

Victor Prybutok, Vice Provost of the
Toulouse Graduate School

THE DESIGN AND IMPLEMENTATION OF AN EFFECTIVE VISION-BASED

LEADER-FOLLOWER TRACKING ALGORITHM USING PI CAMERA

Songwei Li

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

August 2016

Li, Songwei. The Design and Implementation of an Effective Vision-Based Leader-

Follower Tracking Algorithm Using Pi Camera. Master of Science (Electrical Engineering),

August 2016, 44 pp., 28 figures, 14 numbered references.

The thesis implements a vision-based leader-follower tracking algorithm on a ground

robot system. One camera is the only sensor installed the leader-follower system and is

mounted on the follower. One sphere is the only feature installed on the leader. The camera

identifies the sphere in the openCV Library and calculates the relative position between the

follower and leader using the area and position of the sphere in the camera frame. A P

controller for the follower and a P controller for the camera heading are built. The vision-

based leader-follower tracking algorithm is verified according to the simulation and

implementation.

ii

Copyright 2016

by

Songwei Li

iii

ACKNOWLEDGEMENTS

 First, I would like to offer my sincerest gratitude to my major advisor Prof. Yan Wan,

who has supported me throughout my M.S. study with her great patience, encouragement and

mentoring. My sincere thanks also go to the rest of my thesis committee: Prof. Shengli Fu and

Prof. Xinrong Li for their insightful comments and encouragement. I would also like to thank

all of my friends for their company, support, and discussion.

I would also like to thank the Toulouse Graduate School at UNT, and Dr. Wan's grants

from the National Science Foundation under numbers of GF 1453722, GF 1522458 and GF

154483 for the financial supports.

iv

 TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS ... iii

Chapters

1. INTRODUCTION...1

 1.1 Motivation …………………...1

 1.2 Overview of the Thesis ...1

2. ANALYSIS OF APPROACHES FOR OBJECTS’ POSITION USING CAMERA VISION

………………………………………………...………………………............................3

 2.1 Introduction………........................... ..3

2.2 Camera Projection Model……………...………………………………….4

2.3 The Location-Feature-Area Method..6

 2.4 The Location-Feature-Position Method………..11

 2.5 Conclusion..15

3. LEADER-FOLLOWER TRACKING ALGORITHM BASED ON A SINGLE SPHERE

FEATURE………16

 3.1 Introduction ..16

 3.2 Estimation of Sphere’s Center in the Camera Coordinate System............17

 3.3 Estimation the Bearing Angle and the Relative Position of the Sphere…20

3.4 Controller Design…………………………………………..…………....22

3.5 Conclusion...25

4. SIMULATION AND EXPERIMENT …...…..27

 4.1 Simulation...27

 4.2 Hardware and software…………………………….................................. 29

 4.3 Detecting the Target Using Raspberry Pi 2 and OpenCV.........................33

4.4 Experiment Result........…………………………………………….….… 37

v

5. CONCLUSION AND FUTURE WORK...40

5.1 Conclusion..40

5.2 Future Work... 40

REFERENCES ...43

APPENDIX : DIAGRAM OF LEADER-FOLLOWER TRACKING.......................................41

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

UAVs are envisioned to play a big role in disaster rescue, with their capabilities such

as information transmission at a long distance, searching in a disaster area, and surveillance of

the target in the air or on the ground. In the article [1], a drone-to-drone communication system

was built to transfer information at a long distance for a catastrophe scenario. Through the

drone-to-drone communication system, real-time video of the disaster zone can be transmitted

to the rescue center. Drones sometimes need to work with robots on the ground to scan the

disaster area so to get close to a target to obtain the detailed information, in scenarios such as

earthquake or the catastrophe of a chemical factory. In these cases, the drone can bring a robot

with a camera to the disaster area. Then the drone drops the robot on the ground and follows it

using the camera equipped on the drone. Meanwhile, the drone transfers the real-time video

from both cameras to the rescue center.

Motivated by the above scenarios, our goal is to make the follower drone track the

leader robot as much as possible, as the air-to-ground communication requires the robot to be

within a distance to the drone. In this research, we address the leader-follower tracking

problem using camera vision. As the preliminary effort, we implemented the vision-based

tracking algorithm on a ground robot system, and leave the implementation on the drone

platform to the future work.

1.2 Overview of the Thesis

 The remainder of this thesis is organized as follows. Chapter 2 reviews two approaches

to leader-follower tracking problem using camera vision and analyzes their defects that

motivated this research. One approach is to use the area of the sphere in the camera frame to

2

track the leader target. The other is to use the positions of three features in the camera frame to

locate the leader target and then achieve the leader-follower tracking task. Chapter 2 also

justifies a key assumption to this thesis, that one camera installed on the follower can determine

the position of a sphere ball installed on the leader.

 Chapter 3 describes our method for tracking one sphere ball using camera vision and a

proportional controller in the leader-follower tracking system. In this chapter, we first describe

the algorithm to locate the sphere ball using camera vision, then provides the model of a

differential drive robot, and finally describe the control algorithm to implement the follower to

track the sphere target.

 Chapter 4 describes the simulation and implementation of our leader-follower tracking

algorithm described in Chapter 3. The chapter also provides the information of the hardware

and software used in the research.

 Finally, Chapter 5 includes a conclusion and a brief discussion of future works.

3

CHAPTER 2

ANALYSIS OF TWO EXISTING APPROACHES FOR OBJECTS’ POSITION USING

CAMERA VISION

2.1 Introduction

Our goal is to build a leader-follower tracking system using camera vision. To track the

leader, the follower needs to obtain leader information using its own camera, such as estimated

velocity and angular velocity of the leader, the relative position of the leader and follower, and

the bearing angle between the headings of the follower and the leader. Since the velocity and

angular velocity of the leader and the bearing angle can be inferred from the relative position,

the relative position is an key quantity to estimate for leader-follower tracking algorithm.

Through the geometry relationship between cameras on the follower and features on the leader,

the relative position of robots can be calculated, as shown in these papers [2]-[6]. Motivated

by implementation concerns of this project, we try to develop a tracking algorithm with

minimal hardware and feature usage. In particular, when drones and robots search a disaster

zone, they need to load batteries, sensors, microcontrollers, and antennas so that there is little

space left for cameras or multiple well-separated features on their frames. Meanwhile, the

lighter weight can prolong the running time of drones and robots. As a result, we aim to use

the minimal number of cameras and features to complete the tracking task.

In paper [5][4], Davison and Murray calculate the object’s position using two cameras

and one feature. In paper [6], Fang et al describe an approach to calculate the objects’ location

using one camera and four features on one plane. In consideration of the load limitation of

robots and the implementation inconveniences, the number of cameras and features in paper

[5],[6]doesn’t match our requirement of using a minimal number of cameras and features in

our research.

4

In paper [7], an object’s relative distance, which is scaled by the area of one feature (a

ball) in the camera frame, is obtained using one camera and one feature (a ball). When the area

of the ball decreases in the camera frame, it means the ball is moving away from the camera,

or the ball is approaching the camera. This approach didn’t provide the relative position

between the camera and the ball. In this thesis, we call the method location-feature-area. In

paper [8], Chen and Jia use one camera and three features to estimate the leader’s position. The

location method uses the positions of three features in one camera view. This approach is

referred to as location-feature-position in this thesis. Although the location-feature-area and

location-feature-position better match with our requirement compared to [5] and [6], they are

still not suitable for our research. As the location-feature-area method cannot provide the

relative position between the camera and the ball, we cannot build an advanced controller to

improve the performance of the leader-follower tracking system for our research. In addition,

as the requirements of multiple features in the location-feature-position method are hard to

achieve (described in Section 2.3), we cannot implement this approach for our research. We

conducted simulation and analysis for these two approaches, which further demonstrate show

their defects if being applied in this research. Motivated by problems of these two approaches,

we aim to develop an approach to track the leader using only one camera and one feature.

The remainder of this chapter is organized as followers. Chapter 2.2 describes the

projection model of a camera. Chapter 2.3 describes and evaluates the location-feature-area

approach. Chapter 2.4 describes and evaluates the location-feature-position approach. Chapter

2.5 provides a brief conclusion and discusses a key assumption that we use for target’ location

tracking using camera vision.

2.2 Camera Projection Model

5

 This section describes the camera projection model that is used to locate an object’s

position. This model represents the geometric relationship between an image point and its

relative point in the camera coordinates. As shown in Figure 1.(a), O is the original point in the

camera’s coordinates; 𝑍 axis is the optical axis of the camera and perpendicular to the image

plane at point 𝑜; 𝑜 is the original point in the image coordinates; the distance between O and

image plane is 𝑓 , in fact, 𝑓 is the camera’s focal length; point P (𝑋, 𝑌, 𝑍) in the camera

coordinates projects to point p (𝑥, 𝑦) on the image plane.

Figure 1 Illustration of camera projection; (a) The projection from the camera frame to the

image plane. (b) The original point 𝒐 of the image coordinates is the center point of the pixel
coordinates.

According to book [9], point 𝑃 projects to point 𝑝 via:

 [
𝑥
𝑦
1
] = [

𝑓

𝑍
0 0

0
𝑓

𝑍
0

0 0 1

] [
𝑋
𝑌
1
] (2-1)

Then point 𝑝 projects on the CCD (charged coupled device) sensor plane and it can be

expressed in the pixel coordinate via:

 [
𝑚
𝑛
1
] =

[

1

𝛼𝑢
0 𝑚𝑜

0
1

𝛼𝑣
𝑛𝑜

0 0 1]

[
𝑥
𝑦
1
] (2-2)

where (𝑚𝑜, 𝑛𝑜) is the principle point in pixel coordinate, 𝛼𝑢 and 𝛼𝑣 are one pixel physical

dimensions in the horizontal direction u and vertical direction v (see Figure 1).

6

In view of (2-1) and (2-2), the above matrix is rewritten as:

 [
𝑚
𝑛
1
] = [

1/𝛼𝑢 0 𝑚𝑜

0 1/𝛼𝑣 𝑛𝑜
0 0 1

] [

𝑓

𝑍
0 0

0
𝑓

𝑍
0

0 0 1

] [
𝑋
𝑌
1
] (2-3)

 [
𝑚
𝑛
1
] = [

𝑓𝑥

𝑍
0 𝑚𝑜

0
𝑓𝑦

𝑍
𝑛𝑜

0 0 1

] [
𝑋
𝑌
1
] (2-4)

where 𝑓𝑥 = 𝑓/𝛼𝑢, 𝑓𝑦 = 𝑓/𝛼𝑣 . In addition, 𝑓𝑥, 𝑓𝑦 , 𝑚𝑜, 𝑛𝑜 are the intrinsic parameters

and can be obtained by the camera calibration procedure.

2.3 The Location-feature-area Method

The section reviews the location-

feature-area method which was

implemented on the CMUcam5 Pixy sensor

(Pixy) [7] in Figure 2. This sensor was

designed by Charmed Labs for color

detection. It consists of a microcontroller

NXP LPC4330 and an image sensor

Omnivision OV9715. Pixy possesses the

following features. 1) It has a fast speed to

process digital images. Its speed can arrive 50 times per second. 2) It is convenient for users to

use. Pixy has a friendly interface which works with Raspberry Pi, Arduino, and BeagleBone.

Pixy provides its library for these microcontrollers so that users don’t need to knowledge

principles of pattern recognition or compile codes to detect a target. The detection procedure

of Pixy is in the following. Through the software PixyMon that Charmed Labs offers, users

decide which color to be identified. When the target color is detected, Pixy draws the target

with a straight rectangle. For instance, in Figure 3, the target color is red, and the Pixy draws

Figure 2 CMUcam5 Pixy sensor.

7

out the target with a square contour. Users just call functions from Pixy’s library to obtain the

area 𝑆 and center location (𝑥𝑢(𝑡), 𝑦𝑣(𝑡)) of the contour in the camera frame. Meanwhile, the

bearing angle 𝛽(𝑡) between the camera and the heading of the robot can be obtained.

In paper [7], a mobile robot tracks a ball using a proportional controller:

𝑉𝐹(𝑡) = 𝑆𝑑 − 𝑆(𝑡)𝑣𝑔𝑎𝑖𝑛

 dv(𝑡) = ((𝛽𝑑 − 𝛽(𝑡)) + (𝛽𝑑 − 𝛽(𝑡))𝑉𝑓(𝑡))𝑑𝑔𝑎𝑖𝑛

𝑉𝑙(𝑡) = 𝑉𝐹(𝑡) + 𝑑𝑣(𝑡)

𝑉𝑟(𝑡) = 𝑉𝐹(𝑡) − 𝑑𝑣(𝑡)

Where 𝑆𝑑is the desired size of the ball, 𝛽𝑑 is the desired bearing angular, 𝑉𝑔𝑎𝑖𝑛 and 𝑑𝑔𝑎𝑖𝑛 are

the feedback gains, dv (𝑡)Steering differential, 𝑉𝑙 (𝑡)is the velocity of left wheel, 𝑉𝑟(𝑡) is the

velocity of right wheel.

And the controller for the camera to tracking the ball is shown in the following equations

ex(𝑡) = 𝑥𝑢0 − 𝑥𝑢(𝑡)

Figure 3 The contour of detected target (taken from [7]).

8

ey(𝑡) = 𝑦𝑢(𝑡) − 𝑦𝑢𝑜

 𝑉𝑐𝑝(𝑡) = 𝑒𝑥(𝑡)𝑝𝐺𝑎𝑖𝑛 + 𝑒𝑥̇(𝑡)𝑑𝐺𝑎𝑖𝑛

𝑉𝑐𝑡(𝑡) = 𝑒𝑦(𝑡)𝑝𝐺𝑎𝑖𝑛 + 𝑒𝑦(𝑡)̇ 𝑑𝐺𝑎𝑖𝑛

where (𝑥𝑢0, 𝑦𝑣0) is the intrinsic center of the camera, the derivatives of 𝑒𝑥(𝑡) and 𝑒𝑦(𝑡) are 𝑒𝑥̇

and 𝑒𝑦̇ 𝑝𝐺𝑎𝑖𝑛 and 𝑑𝐺𝑎𝑖𝑛 are the feedback gains, 𝑉𝑐𝑝(𝑡) and 𝑉𝑐𝑡(𝑡) are the velocities of the pan

servo and the tilt servo. In order to simulate the leader-follower tracking system using the

location-feature-area method, we build the code to simulate in MATLAB.

The pseudocode for leader-follower tracking system using the location-feature-area

method

Step 1: Initialization

1.1
(𝑥𝑓(1), 𝑦𝑓(1)) = (50,25), 𝑉𝑓(1) = 0,𝑊𝑓(1) = 0, 𝛽𝑑 = 0, 𝑆𝑑 =

400, (𝑥𝑢0, 𝑦𝑣0) = (160,120) and the total time steps 𝑡𝑡𝑜𝑡𝑎𝑙=1000

1.2 for 𝑡 =1: 𝑡𝑡𝑜𝑡𝑎𝑙

Step 2: Object detection

2.1
According to the ball’s projection in the pixel frame, one obtains 𝑆 and

(𝑥𝑢, 𝑦𝑣)

Step 3: Calculate the velocities of follower

3.1 if 𝑆(𝑡) = 𝑆𝑑 && 𝛽(𝑡) = 𝛽𝑑

 𝑉𝑙(𝑡) ← 0, 𝑉𝑟(𝑡) ← 0;

 else

 Calculate 𝑉𝐹(𝑡) and 𝑑𝑣(𝑡) with equation (2-6);

 𝑉𝑙(𝑡) ← 𝑉𝐹(𝑡) + 𝑑𝑣(𝑡)；

 𝑉𝑟(𝑡) ← 𝑉𝐹(𝑡) − 𝑑𝑣(𝑡);
 end

3.2

3.3

3.4

3.5

3.6

3.7

Step 4: Update the position of the follower

4.1
 𝛽(𝑡 + 1) = 𝛽(𝑡) +

𝑉𝑟−𝑉𝑙

𝑏
 𝛿; %𝛿 is the sampling time, b is the distance

between the centers of the left wheel and right wheel

 𝑥𝑓(𝑡 + 1) = 𝑥𝑓(𝑡) +
𝑉𝑟+𝑉𝑙

2
 cos (𝛽(𝑡 + 1))𝛿;

 𝑦𝑓(𝑡 + 1) = 𝑦𝑓(𝑡) +
𝑉𝑟+𝑉𝑙

2
 sin (𝛽(𝑡 + 1))𝛿;

4.2

4.3

Step 5: Update the bearing angular 𝛽(𝑡 + 1)

5.1 if (𝑥𝑢, 𝑦𝑣)= (𝑥𝑢0, 𝑦𝑣0)
5.2 𝑉𝑐𝑝 ← 0, 𝑉𝑐𝑡 ← 0;

5.3 else

5.4 𝑉𝑐𝑝 ← 𝑒𝑥𝑝𝐺𝑎𝑖𝑛 + 𝑒𝑥̇𝑑𝐺𝑎𝑖𝑛 ;

5.5 𝑉𝑐𝑡 ← 𝑒𝑦𝑝𝐺𝑎𝑖𝑛 + 𝑒𝑦̇𝑑𝐺𝑎𝑖𝑛;

9

5.6 end

5.7 𝛽(𝑡 + 1) = 𝛽(𝑡) + 𝑉𝑐𝑝𝛿; go to back step 2

 end

The result of the simulation is shown in Figure 5. In order to simulate the real scenario, an

arbitrary trajectory of the leader is created using the smooth-turn mobile model [10] in Figure

4 . The starting points of the leader target and follower robot are (51, 26) and (51, 25). As

shown in Figures 4, 5, although the follower follows the ball to move, the follower cannot

achieve the desired tracking performance. The bearing angle 𝛽 (𝑡) is more than 0.5 in the last

part of the simulatition. In the implementation of Pixy, some defects of location-feature-area

are observed: 1) It cannot estimate the relative position between the camera and the leader ball,

and such it cannot implement an advanced controller to improve the performance of leader-

follower tracking proplem. 2) The camera cannot distinguish the detected target from objects

with a similar color. As a result, the camera may lose the identified target easily. Sometimes,

Figure 4 The trajectories of follower and leader. The follower tracks the leader using the

location-feature-area method.

10

Pixy may draw the target with noise and then calculate the area of contour in a wrong way (see

Figure 6). Due to these defects, this algorithm does not perform well.

Figure 6 Target detection in Pixy. The ball is the detected target and the rectangle is noise.

(a) The noise is identified as a target. (b) The ball and noise are identified as a target.

Figure 5 Simulation result. 𝑽𝑭 is the follower’s velocity. 𝒙𝒖 is the position of the ball in the

camera view. 𝜷 is the beading angular between the camera and the heading of the robot.

11

 2.4 The Location-Feature-Position Method

 This section reviews and analyzes the location-feature-position method. In this

algorithm [6], the altitudes of three features are not equal to zero in the camera coordinate, the

height of one feature must be positive in the camera coordinate, and these features are not on

one perpendicular plane of the follower robot’s motion plane. Also, the camera must always

detect three separate features. According to the camera projection model and geometric

analysis between the leader, camera and the desired position of the follower [8], the following

formation can calculate the bearing angular 𝛽 between the headings of the follower robot and

the leader target:

 𝑎𝑖𝑗𝑠𝑖𝑛∆ + 𝑏𝑖𝑗𝑐𝑜𝑠∆= 𝑐𝑖𝑗 (2-7)

where

∆ = −𝜑 + 𝜑∗ + 𝛽

 𝑎𝑖𝑗 = −𝑥𝑖𝑥𝑗
∗ − 𝑦𝑖𝑦𝑗

∗ + 𝑦𝑗𝑦𝑖
∗ + 𝑥𝑗𝑥𝑖

∗

 𝑏𝑖𝑗 = −𝑥𝑖𝑦𝑗
∗ + 𝑦𝑖𝑥𝑗

∗ − 𝑦𝑗𝑥𝑖
∗ + 𝑥𝑗𝑦𝑖

∗

 𝑐𝑖𝑗 = −𝑥𝑖𝑦𝑗 + 𝑦𝑖𝑥𝑗 − 𝑥𝑖
∗𝑦𝑗

∗ + 𝑦𝑖
∗𝑥𝑗
∗ (2-8)

𝜑 is the bearing angular between the camera and the heading of the follower robot, 𝜑∗ is the

desired bearing angular between the camera and the heading of the follower robot, 𝑥𝑖 =

𝑋𝑖

𝑍𝑖
, 𝑦𝑖 =

𝑌𝑖

𝑍𝑖
 𝑎𝑛𝑑 (𝑋𝑖, 𝑌𝑖 , 𝑍𝑖) is the position of one feature 𝑄𝑖 in the camera frame, 𝑥𝑖

∗ =

𝑋𝑖
∗/𝑍𝑖

∗, 𝑦𝑖
∗ = 𝑌𝑖

∗/𝑍𝑖
∗ and (𝑋𝑖

∗, 𝑌𝑖
∗, 𝑍𝑖

∗) is the desired position of the feature 𝑄𝑖 in the camera

frame, 𝑥𝑗 =
𝑋𝑗

𝑍𝑗
, 𝑦𝑖 =

𝑌𝑗

𝑍𝑗
 𝑎𝑛𝑑 (𝑋𝑗 , 𝑌𝑗 , 𝑍𝑗) is the position of one feature 𝑄𝑗 in the camera frame,

𝑥𝑗
∗ = 𝑋𝑗

∗/𝑍𝑗
∗, 𝑦𝑗

∗ = 𝑌𝑗
∗/𝑍𝑗

∗ and (𝑋𝑗
∗, 𝑌𝑗

∗, 𝑍𝑗
∗) is the desired position of the feature 𝑄𝑗 in the camera

frame. When the number of features is 3, the following formation can be obtained from (2-1):

 [
𝑠𝑖𝑛∆
𝑐𝑜𝑠∆

] = (𝐶𝑇𝐶)−1𝐶𝑇𝐷 (2-9)

where

12

 𝐶 = [
𝑎12 𝑏12
𝑎13 𝑏13
𝑎23 𝑏23

] , 𝐷 = [

𝑐12
𝑐13
𝑐23
] (2-10)

According to equation (2-3), the bearing angular 𝛽 is

 𝛽 = 𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛∆, 𝑐𝑜𝑠∆) + 𝜑 − 𝜑∗ (2-11)

As the camera cannot measure the location error (𝑋𝑒 , 𝑌𝑒) between the current location and

desired location of the follower robot, the paper [8] defines new variables (xe, ye) =

(𝑋𝑒/𝑍𝑙 , 𝑌𝑒/𝑍𝑙) where 𝑍𝑙 is the altitude of one feature in the camera feature. (xe, ye) is

measureable through the camera projection model. In the location-feature-position method, any

one feature of the three features can be chosen as the position of the leader. The target feature

is denoted as 𝑄1(𝑋1, 𝑌1, 𝑍1). Through the geometric analysis [8], (xe, ye) is calculated by the

following equation:

 [
𝑥𝑒
𝑦𝑒
] = 𝑅(𝛽) [

𝑥𝑑
𝑦𝑑
] + 𝑅(𝜑) [

𝑥1
𝑦1
] (2-12)

where 𝑥𝑑 =
𝑋𝑑

𝑍1
, 𝑦𝑑 =

𝑌𝑑

𝑍1
 and (𝑋𝑑, 𝑌𝑑) is the desired position of the follower corresponding to

the leader; 𝑥1 =
𝑋1

𝑍1
, 𝑦1 =

𝑌1

𝑍1
; 𝑅() is a rotation matrix:[

cos () −sin ()
sin () cos ()

] . The procedure of the

leader-follower tracking system using the location-feature-position method is shown in Figure

7. In this procedure, 𝑣𝑓 is the velocity of the follower, 𝑤𝑓 is the angular velocity of the follower,

(𝑋𝑓 , 𝑌𝑓) is the position of the follower in the world coordinates, 𝑤𝑐 is the angular velocity of

the camera, and 𝑒𝑥 is the error between the current position and the desired position of 𝑄1 at

the horizontal direction in the pixel coordinates. The follower controller𝑓(𝑥𝑒 , 𝑦𝑒, 𝛽) and pan

camera controller 𝐶(𝑒𝑥, 𝑤𝑓) are backstepping controller which builds a stabilizing controllers

by a recursive method.

13

Figure 7 The diagram of the leader-follower tracking system using the location-feature-

position method.

In order to simulate the leader-follower tracking system using the location-feature-

position method, we build the following codes to simulate in MATLAB.

Step 1: Initialization

1.1 𝑋𝑑 = 0.5, 𝑌𝑑 = 0.3, 𝑣𝑓 = 0,𝑤𝑓 = 0, 𝑋𝑓 = 49.50, 𝑦𝑓 = 24,𝑚1
∗ = 419.299 ,

the total time steps 𝑡𝑡𝑜𝑡𝑎𝑙 = 1000 , 𝜑∗ =
𝜋

6
, ; the orientation angular of the

follower 𝑓𝑑 = 𝑝𝑖/2

Note: 𝑚1
∗ is the desired position of the feature 𝑄1in the pixel coordinates;

 for 𝑡 =1: 𝑡𝑡𝑜𝑡𝑎𝑙
Step 2: Object detection

2.1 𝛽 ← 𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛∆, 𝑐𝑜𝑠∆) + 𝜑 − 𝜑∗
2.2 [

𝑥𝑒
𝑦𝑒
] ← 𝑅(𝛽) [

𝑥𝑑
𝑦𝑑
] + 𝑅(𝜑) [

𝑥1
𝑦1
]

2.3 𝑒𝑥 ← 𝑚1 −𝑚1
∗ ; % 𝑚1 is the position of feature 𝑄1 at the horizontal

direction of the pixel coordinates.

Step 3: Update the position of the follower

3.1 𝑣𝑓 , 𝑤𝑓 ← 𝑓(𝑥𝑒 , 𝑦𝑒, 𝛽);

3.2 𝑓𝑑 ← 𝑓𝑑𝑝𝑟𝑒 + 𝑤𝑓𝛿 ; %𝛿 is the sampling time and 𝛿 = 0.1𝑠, 𝑓𝑑𝑝𝑟𝑒 is

 the 𝑓𝑑 at the last step time.

3.3 𝑋𝑓 ← 𝑋𝑓𝑝𝑟𝑒 + v𝑓cos (𝑓𝑑)𝛿 ; % 𝑋𝑓𝑝𝑟𝑒 is the 𝑋𝑓 at the last step time;

3.4 𝑌𝑓 ← 𝑌𝑓𝑝𝑟𝑒 + v𝑓sin (𝑓𝑑)𝛿 ; % 𝑌𝑓𝑝𝑟𝑒 is the 𝑌𝑓 at the last step time;

Step 4: Update the bearing angular 𝜑

4.1 𝑤𝑐 ← 𝐶(𝑒𝑥, 𝑤𝑓)

4.2 𝜑 ← 𝜑𝑝𝑟𝑒 +𝑤𝑐𝛿 ; % 𝜑𝑝𝑟𝑒 is the 𝜑 at the last step time;

4.3 Go back step 2

 end

14

As shown in Figures 8 and 9, the errors xe, ye tend to become zero, and the follower robot

tracks the leader target well. To compare it with the location-feature-area method, the location-

feature-position method can measure the bearing angular β and the relative position

error (xe, ye) . Furthermore, the follower robot can track the leader target by a relative

position(xd, yd). In addition, an advanced controller for the leader-follower tracking system is

built using the bearing angle β and position error(xe, ye).

In consideration of the requirements of features, three feature were used on the leader

robot. If these features are small ones, the camera on the drone cannot catch them. If the features

are large ones, they become close to each other and hence the camera cannot distinguish them

as three separate features. Moreover, when we implement this method on a drone and a robot,

it is possible that the height of one feature is zero in the camera frame. In this case, the camera

cannot measure the position of the leader. As such, it’s difficult to implement the leader-

follower tracking system using the method location-feature-position for our drone-robot

tracking problem.

Figure 8 Trajectories of the follower and leader.

15

2.5 Conclusions

 The location-feature-area method uses the area of one ball and the bearing angle 𝛽 to

scale the leader target’s location in the camera frame to address the leader-follower trcking

problem. However, the relative position of the follower and leader cannot be obtained. The

location-feature-position method uses three features to calculate the target’s relative position.

Due to the requirement of three features, it is still unrealistic to implement in our research.

Therefore, it is necessary to find a new effective approach to tracking using camera vision. The

method can provide the accurate relative position of a detected object corresponding to the

camera. Meanwhile, the approach only needs to use one camera and one feature. In this thesis,

we use one camera and one feature to locate the target and then build a controller to address

the leader- follower tracking problem. In Chapter 3, we describe how to locate a target using

one camera and one ball.

Figure 9 Simulation result. 𝒆𝒙 is the image error. 𝒙𝒆 and 𝒚𝒆 are the formation error.

16

CHAPTER 3

LEADER-FOLLOWER TRACKING ALGORITHM BASED ON A SINGLE SPHERE

FEATURE

3.1 Introduction

In this section, we build a leader-follower tracking system with one camera installed on

the follower and one sphere placed on the leader. In this tracking system, the leader’s position

need to be measured using a leader-follower tracking algorithm. Through the camera

measurement and the geometry analysis between the follower and the leader, we can obtain the

leader’s location. Based on the estimated leader’s position, we can build a control system on

the follower to track the leader. As shown in Figure 10, we expect the follower to track the

leader with the distance L and bearing angular λ. L is the distance between the camera’s center

𝑂𝑙 and the sphere’s center Oc. λ is the bearing angular between the heading of the follower and

Oc𝑂𝑙. In order to keep the feature in the camera view, we also build a P-controller for a pan

camera which just moves on its pan direction.

Figure 10 The formation of leading-follower tracking.

system.

17

 In this section, we first show how to use one camera to measure the sphere’s relative

position with respect to the follower and calculate the bearing angle 𝛽 between the directions

of the follower and the leader. Then, we build P-controllers that allow the follower to track the

leader based on parameters that the camera measures.

3.2 Estimation of Sphere’s Position in the Camera Coordinate System

In this section, we focus on the procedure to measure the leader’s position using the

camera vision in the camera’s coordinates. First, we show the projection of a sphere on the

image plane. Then we briefly describe the relationship between the image coordinate and the

camera coordinate and introduce the procedures to transfer the sphere’s location from the image

coordinate to the camera coordinate.

3.2.1 Projection of a Sphere on the Image Plane

Figure 11 shows the projection of a sphere on the image plane, as marked in yellow. In

fact, the projection is an ellipse which is the intersection plane of the image plane and the green

cone. In this figure, 𝑂𝑠 is the sphere’s center with location (𝑋𝑠, 𝑌𝑠 , 𝑍𝑠) in the camera’s

coordinate. 𝑅𝑠 is the radius of the sphere, and 𝛾 is the bearing angle between the vector 𝑂𝑐𝑂𝑠

and the principal axis 𝑋𝑐, where 𝑂𝑐 is the optical center.

As shown in Figure 10, the outline of the sphere’s projection (yellow ellipse) is the

projection of the green circle, which is the intersection of the sphere and the green cone tangent

to the sphere. In paper [11], the ellipse is expressed by the following function:

 (
𝑥

𝑎
)
2

+ (
𝑦

𝑏
)
2

= 1 (3-1)

 Where 𝑎 ≈
𝑍𝑠

𝑅𝑠
, 𝑏 ≈

𝑍𝑠

𝑅𝑠
cos (𝛿). The area A of the ellipse is 𝐴 = 𝜋𝑎𝑏.

18

Next, let us show the calculation of the sphere’s center location (𝑋𝑠,𝑌𝑠, 𝑍𝑠).

3.2.2 Relationship between the Image Coordinates and the Camera Coordinates

Suppose (𝑚𝑖 , 𝑛𝑖) is the location of a point in the image coordinate, then it has the

following relationship with its corresponding location (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) in the camera coordinate

𝑋𝑐𝑌𝑐𝑍𝑐 (see the Figure 11), according to the camera projection model:

 𝑚𝑖 = 𝑓𝑦
𝑌𝑖

𝑋𝑖
+𝑚𝑜 (3-2)

 𝑛𝑖 = 𝑓𝑧
𝑍𝑖

𝑋𝑖
+ 𝑛𝑜 (3-3)

Where 𝑓𝑦 = 𝑓/𝛼𝑢 and 𝑓𝑧 = 𝑓/𝛼𝑣, 𝑓 is the focal length, 𝛼𝑢, 𝛼𝑣 are the pixel dimensions, and

(𝑚𝑜, 𝑛𝑜) is the location of the principal point of the camera in the image coordinates.

3.2.3 Estimation of the Sphere Position from an Image

The procedures introduced in paper [11] estimates the location of sphere’s center

(𝑋𝑠, 𝑌𝑠, 𝑍𝑠) in the camera coordinates are shown as follows.

Figure 11 Projection of a sphere on the image plane.

19

1) Estimate the center of the sphere’s projection(𝑚𝑠, 𝑛𝑠), and its area A.

2) According to equations 3-2,3-3, it’s easy to obtain

𝑌𝑠

𝑋𝑠
=

ms−mo

𝑓𝑦
 (3-4)

𝑍𝑠

𝑋𝑠
=

𝑛𝑠−𝑛𝑜

𝑓𝑧
 (3-5)

3) Denote
𝑌𝑠

𝑋𝑠
 as 𝑦𝑠, and

𝑍𝑠

𝑋𝑠
 as 𝑧𝑠, then the bearing angle 𝛾 = −𝑎𝑟𝑐𝑡𝑎𝑛√𝑦𝑠2 + 𝑧𝑠2.

4) Calculate the area A of the sphere’ ellipse projection by 𝐴 = 𝑁/(𝑓𝑌𝑓𝑧), where N is the

number of pixels in this area.

5) Compute 𝑋𝑠 = 𝑅𝑠√𝜋/(𝐴𝑐𝑜𝑠𝛾). Then 𝑌𝑠 = 𝑦𝑠𝑋𝑠, 𝑍𝑠 = 𝑧𝑠𝑋𝑠.

Figure 12 Leader-follower formation.

20

Table 1 Definitions of Notations used in Figure 12

𝑌𝑙 the heading of the leader
𝑌𝑓, 𝑌𝑓

∗ the heading of the follower at 𝑇0, 𝑇1

Of the center of the follower
𝑂𝑐,𝑂𝐶

∗ the optical center of the camera
d the distance between Of and 𝑂𝑐
𝑂𝑙 the center of the leader at 𝑇0

𝑂𝑙
∗ the center of the leader at 𝑇1

𝑂𝑋𝑌 The world coordinates

𝑂𝑐𝑋𝑓𝑌𝑓 robot frame of the follower at 𝑇0

𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗ robot frame of the follower at 𝑇1

𝑂𝑐𝑋𝑐𝑌𝑐 camera frame at 𝑇0
𝑂𝑐
∗𝑋𝑐

∗𝑌𝑐
∗ camera frame at 𝑇1

𝛼0 , 𝛼1 the orientation of the camera corresponding to the follower at time 𝑇0
and 𝑇1

𝑂𝑙𝑌𝑙 the direction of the leader
𝑂𝑙𝑂𝑙

∗ Direction vector of the leader’s motion

𝑋𝑐0, 𝑌𝑐𝑜 , 𝑍𝑐0 the camera coordinate of 𝑂𝑙at 𝑇0
𝑋𝑐1, 𝑌𝑐1, 𝑍𝑐1 the camera coordinate of 𝑂𝑙

∗at 𝑇1

3.3 Estimation the Bearing Angle 𝛽 and the Relative Position of the Sphere

In this section, we introduce the process to estimate the bearing angle 𝛽 and the relative

position of the sphere in the follower’s coordinates. In order to measure 𝛽, we need to measure

the relative position of the sphere and transfer the positions of the sphere at time 𝑇1 and 𝑇0 into

the follower’s coordinate 𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗ (see Figure 12).

3.3.1Transfer Sphere’s Position at Time 𝑇0 to the Follower’s Coordinates 𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗

In this section, we show the transformation of the sphere’s location from the image

coordinates to the follower’s coordinate 𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗ at 𝑇0. Denote the location of the sphere and

its area obtained by the camera at time 𝑇0 as (𝑚𝑡0, 𝑛𝑡0) and 𝐴0, respectively. According to

Section 3.2, we can get the sphere’s center location (𝑋𝑐0, 𝑌𝑐0, 𝑍𝑐0) in the camera coordinates.

21

In order to transfer (𝑋𝑐0, 𝑌𝑐0) to the coordinate 𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗, we first need to transfer it to the

coordinate 𝑂𝑐𝑋𝑓𝑌𝑓. This can be realized through coordinate space transformation as follows.

 [
𝑋𝑐0
′

𝑌𝑐0
′] = 𝑅(𝜋/2 − 𝛼0) [

𝑋𝑐0
𝑌𝑐0
]

Where 𝛼0 is the bearing angle among 𝑋𝑐 and the direction 𝑌𝑓 at time 𝑇0 , (𝑋𝑐0
′ , 𝑌𝑐0

′) is the

location of the sphere’s center in 𝑂𝑐𝑋𝑓𝑌𝑓. R is the rotation matrix shown as follows

 𝑅(∙) = [
cos(∙) − sin(∙)

sin(∙) cos(∙)
] (3-7)

Now we can calculate the location of the sphere’s center in the coordinate 𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗. In order to

achieve this, we first need to obtain the moving direction of the follower from 𝑇0 to 𝑇1, which

is approximated as the direction of the vector 𝑂𝑐𝑂𝑐
∗ in 𝑂𝑋𝑌 (see Figure 12). Suppose the

velocity and angle velocity of the follower are 𝑣 and 𝑤, which can be obtained by encoders.

The direction angular of the follower in 𝑂𝑋𝑌 is 𝜃. Then, 𝑂𝑐𝑂𝑐
∗ = (∆𝑥, ∆𝑦) can be obtained by

following equations

 ∆𝑥 = (𝑣𝑐𝑜𝑠(𝜃 + 𝑤∆𝑇) + 𝑑𝑤𝑐𝑜𝑠(𝜃 + 𝑤∆𝑇)) ∙ ∆𝑇 (3-8)

 ∆𝑦 = (𝑣𝑠𝑖𝑛(𝜃 + 𝑤∆𝑇) + 𝑑𝑤𝑠𝑖𝑛(𝜃 + 𝑤∆𝑇)) ∙ ∆𝑇 (3-9)

where ∆𝑇 = 𝑇1 − 𝑇0 and 𝑑 is the distance between the center of the follower and the camera.

Then we can get the location (𝑋0, 𝑌0) of sphere’s center 𝑂𝑙 in the coordinate 𝑂𝑐
∗𝑋𝐹

∗𝑌𝑓
∗as follows

 [
X0
Y0
] = R(π/2 − α0 −𝑤∆𝑇) [

Xc0
Yc0
] − R(𝜋/2 − 𝜃 − 𝑤∆𝑇) [

∆𝑥
∆𝑦
] (3-10)

3.3.2 Transfer Sphere’s Location at Time 𝑇1 To The Follower’s Coordinate 𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗

In this section, we introduce the transformation of the sphere’s location 𝑂𝑙 from the

image coordinate to the follower’s coordinate 𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗. Denoting the position of the sphere and

its area obtained by the camera at time 𝑇1 as (𝑚𝑡1, 𝑛𝑡1) and 𝐴1 respectively, we can follow the

procedures introduced in Section 3 to calculate the sphere’s center location (𝑋𝑐1, 𝑌𝑐1, 𝑍𝑐1). Then

the sphere’s center location in the follower’s coordinate 𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗, denoted as (𝑋1, 𝑌1), can be

22

obtained through simple coordinate space transformation. The mathematical equation is shown

as follows.

 [
X1
Y1
] = R(𝜋/2 − 𝛼1) [

Xc1
Yc1
] (3-11)

where 𝛼1 is the bearing angle between axes 𝑋𝑐
∗ and 𝑌𝑓

∗ at time𝑇1 (see Figure 12).

3.3.3 Estimation of the Bearing Angle 𝛽

Having obtained the location of the sphere expressed in the follower’s coordinate

𝑂𝑐
∗𝑋𝑓

∗𝑌𝑓
∗ at 𝑇0 and 𝑇1 , we can now calculate the bearing angle 𝛽 between the follower’s

direction 𝑌𝑓
∗ and the motion vector 𝑂𝑙𝑂𝑙

∗ of the leader, using the following equation:

 𝛽 =

{

 arctan (

𝑋1−𝑋0

𝑌1−𝑌0
) 𝑖𝑓 𝑌1 − 𝑌0 > 0

 arctan (
𝑋1−𝑋0

𝑌1−𝑌0
) + 𝜋 𝑖𝑓 𝑌1 − 𝑌0 < 0 and 𝑋1 − 𝑋0 ≥ 0

arctan (
𝑋1−𝑋0

𝑌1−𝑌0
) − 𝜋 𝑖𝑓 𝑌1 − 𝑌0 < 0 and 𝑋1 − 𝑋0 < 0

 +
𝜋

2
 𝑖𝑓 𝑌1 − 𝑌0 = 0 and 𝑋1 − 𝑋0 > 0

−
𝜋

2
 𝑖𝑓 𝑌1 − 𝑌0 = 0 and 𝑋1 − 𝑋0 < 0

0 𝑖𝑓 𝑌1 − 𝑌0 = 0 and 𝑋1 − 𝑋0 > 0

 (3-12)

3.4 Controller Design

 In this section, we design P-controllers for the leader-follower tracking system using

camera vision. As shown in Figure 12, we expect the follower tracks the leader with the

distance L and bearing angular λ. 𝐿 is the distance between the camera’s center 𝑂𝑙 and the

sphere’s center Oc. λ is the bearing angular between the heading of the follower and Oc𝑂𝑙. In

the process of leader -follower tracking system, the follower need to adjust its velocity 𝑣𝑓 and

angular velocity 𝑤𝑓 to keep itself at the desired position corresponding to the leader. The driver

model of the robot can influence how to adjust 𝑣𝑓 and 𝑤𝑓 so that it is necessary to comprehend

the kinematics of the follower robot. In this project, we apply the controller algorithm on a

23

differential driver robot with DC motors. Therefore, Section 3.4.1 introduces the differential

drive kinematics and DC motor model. Then, Section 3.4.2 focuses on the P-controller design.

3.4.1 The Differential Drive Kinematics and DC Motor Model

The differential drive kinematics model [13] is:

 𝑤(𝑡) =
𝑣𝑟(𝑡)−𝑣𝑙(𝑡)

𝑏
 (3-13)

 𝑣(𝑡) =
𝑣𝑟(𝑡)+𝑣𝑙(𝑡)

2
 (3-14)

where 𝑤(𝑡) is the angular velocity of the robot, 𝑣(𝑡) is the velocity of the robot, 𝑣𝑟(𝑡) and

𝑣𝑙(𝑡) are the velocity of the wheel at the right side and left side, b is the distance from the left-

side wheel to the right-side wheel. According to Equations 3-13 and 3-14, we can obtain the

following equations:

 𝑣𝑟(𝑡) =
2𝑣(𝑡)+𝑏𝑤(𝑡)

2
 (3-15)

 𝑣𝑙(𝑡) =
2𝑣(𝑡)−𝑏𝑤(𝑡)

2
 (3-16)

Assuming the radius of the wheel is 𝑅, we can get the angular velocity of the wheels are:

 𝑤𝑟(𝑡) =
𝑣𝑟(𝑡)

𝑅
 (3-17)

 𝑤𝑙(𝑡) =
𝑣𝑙(𝑡)

𝑅
 (3-18)

where 𝑤𝑟(𝑡) is the angular velocity of the wheel at the right side, 𝑤𝑙(𝑡) is the angular velocity

of the right side.

The DC motor model [14] is

 𝑣𝑚 = 𝑒 + 𝑅𝑎𝑖𝑎 + 𝐿𝑎
𝑑𝑖𝑎

𝑑𝑡
 (3-19)

 𝐽
𝑑𝑤𝑚

𝑑𝑡
+ 𝐵𝑙𝑤𝑚 = 𝑇𝑒 − 𝑇𝑙 (3-20)

 𝑇𝑒 = 𝐾𝑏𝑖𝑎 (3-21)

where 𝑣𝑚 is the input voltage of the motor, 𝑒 is the induced emf, 𝑅𝑎 is the resistance of the

motor, 𝑖𝑎 is the current of the motor, 𝐿𝑎is a self –inductance, 𝑤𝑚 is the motor’s angular speed,

24

J is the inertia moment of the motor, 𝐵𝑙 is the viscous friction coefficient, 𝑇𝑒 is the air gap

torque of the motor, 𝑇𝑙 is the lode toque, 𝐾𝑏 is the induced emf constant. To transform equation

(3-19, 3-20) into their Laplace equations, we can get the following equations

 𝐼𝑎(𝑠) =
𝑉𝑚(𝑠)−𝐾𝑏𝑤𝑚(𝑠)

𝑅𝑎+𝑠𝐿𝑎
 (3-22)

 𝑤𝑚(𝑠) =
𝐾𝑏𝐼𝑎(𝑠)−𝑇𝑙(𝑠)

(𝐵𝑙+𝑠𝐽)
 (3-23)

Formulations 3-22 and 3-23 indicate that the voltage of motor can control the angular velocity

of a wheel. In fact, PWM (pulse-width modulation) is often used to adjust the voltage of a

motor. Therefore, we can use the value of PWM to control the angular velocity of a motor.

Since the angular velocity wl, 𝑤𝑓 decide the velocity and direction of the follower, we can

control the value of PWM to control the follower’s movement.

3.4.2 Control Design for the Follower and Camera

Our goal is that the follower tracks the leader with the desired bearing 𝜆𝑑 and desired

length 𝐿𝑑. According to function 3-11, the camera measures the sphere’s position (𝑋(𝑘), 𝑌(𝑘))

at time 𝑘 in the follower’s coordinate. The distance 𝐿(𝑘) between the camera and the sphere is:

 𝐿(𝑘) = √𝑋2(𝑘) + 𝑌2(𝑘)
2 (3-24)

The bearing angular 𝜆(𝑘) between the heading of the follower and the camera’s direction is:

 𝜆(𝑘) = 𝑎𝑡𝑎𝑛2(𝑋(𝑘), 𝑌(𝑘)) (3-25)

Setting the setpoint (𝐿𝑑, 𝜆𝑑), we can build a P-controller algorithm for leader-follower tracking

system:

 𝑣𝑓(𝑘) = 𝑣𝑔𝑎𝑖𝑛(𝐿(𝑘) − 𝐿𝑑) (3-26)

𝑤𝑓(𝑘) = 𝑤𝑔𝑎𝑖𝑛(𝜆𝑑 − 𝜆(𝑘)) (3-27)

where 𝑣𝑔𝑎𝑖𝑛 and 𝑤𝑔𝑎𝑖𝑛 are the gain of the P-controller. According to Equations from 3-13 to

3-18, we obtain the desired angular velocities 𝑤𝑟(𝑘), 𝑤𝑙(𝑘) of the follower’s wheels. The

25

current angular velocities 𝑤𝑟𝑐(𝑘), 𝑤𝑙𝑐(𝑘) are measured by encoders installed on the shaft of

the motors. Likewise, we design a new P control based on the error between 𝑤𝑟 , 𝑤𝑙 and

𝑤𝑟𝑐, 𝑤𝑙𝑐 in order to make the rotational speeds of motors keep pace with their desired rotational

speeds. The P-controller algorithm for motors is:

 𝑝𝑤𝑚𝑟(𝑘) = 𝑝𝑟𝑔𝑎𝑖𝑛(𝑤𝑟(𝑘) − 𝑤𝑟𝑐(𝑘)) (3-28)

 𝑝𝑤𝑚𝑙(𝑘) = 𝑝𝑙𝑔𝑎𝑖𝑛(𝑤𝑙(𝑘) − 𝑤𝑙𝑐(𝑘)) (3-29)

where 𝑝𝑟𝑔𝑎𝑖𝑛 and 𝑝𝑙𝑔𝑎𝑖𝑛 are the gains of the P-controller. Then we obtain the input PWM of

the motors:

𝑃𝑊𝑀𝑟(𝑘) = 𝑃𝑊𝑀𝑟(𝑘 − 1) + 𝑝𝑤𝑚𝑟 (𝑘) (3-30)

𝑃𝑊𝑀𝑙(𝑘) = 𝑃𝑊𝑀𝑙(𝑘 − 1) + 𝑝𝑤𝑚𝑙 (𝑘) (3-31)

where 𝑃𝑊𝑀𝑟 and 𝑃𝑊𝑀𝑙 are the input PWMs of motors at the time k, 𝑃𝑊𝑀𝑟 (𝑘 −

1) and 𝑃𝑊𝑀𝑙(𝑘 − 1) are the input PWM of motors at the time 𝑘 − 1. In the whole process of

leader-follower tracking system, the camera needs to track the sphere on the leader and keep

the ball in the camera view. Otherwise, the camera will lose the target and cannot estimate the

relative position of the leader. As a result, it is necessary to build a controller to make the

camera keep pace with the ball’s movement. We also build a P-controller algorithm for the

camera which moves on its pan direction. The desired position of the ball is the center point of

the camera view in the pixel coordinates. Denote the center point of the camera view is 𝑚𝑜 at

the pan direction of the camera. The P-control of the camera is designed as follows:

 𝑤𝑐(𝑘) = 𝑐𝑔𝑎𝑖𝑛(𝑚𝑜 −𝑚(𝑘)) (3-32)

where 𝑐𝑔𝑎𝑖𝑛 is the feedback gain, 𝑚(𝑘) is the position of the ball in the camera frame at the

time k, and 𝑤𝑐(𝑘) is the angular velocity of the camera.

3.5 Conclusion

 In this chapter, we apply one camera and one ball to locate the leader’s position

corresponding with the follower. Meanwhile, through transferring the positions of the leader

26

into the follower’s coordinates, we obtain the bearing angular 𝛽 between the headings of the

follower and leader. Then, we apply the information from the camera to build P-controllers for

the leader-follower tracking system. In the next chapter, we focus on the simulation and

implementation for leader-follower tracking system using camera vision.

27

CHAPTER 4

SIMULATION AND IMPLEMENTATION

In this section, we focus on the simulation and implementation of the leader-follower

tracking system using camera vision. This section is organized as follows. Chapter 4.1 includes

the procedure and results of simulation studies using MATLAB. Chapter 4.2 includes the

hardware and software designs utilized in this research. Chapter 4.3 describe the procedure to

detect an object using a Pi camera. Chapter 4.4 includes the procedure and results of the

implementation for the leader-following tracking system.

4.1 Simulation

According to Chapter 3, we design a diagram in Appendix 1 to achieve the leader-

following tracking task using one camera and one ball. In this figure, (𝑥𝑓, 𝑦𝑓) is the position of

the follower, 𝑒𝐿 = 𝐿𝑑 − 𝐿(𝑘), and 𝑒𝜆 = 𝜆𝑑 − 𝜆(𝑘) . Furthermore, to simulate the leader-

follower tracking system using one camera and one ball, we build the following codes to

simulate in MATLAB.

Step1: Initialization

1.1 𝐿𝑑 = 1.414 𝑚, 𝜆𝑑 = 0.7 𝑟𝑎𝑑𝑖𝑎𝑛,𝑚0 = 243.942, 𝑛𝑜 = 158.441

𝑓𝑦 = 497.157, 𝑓𝑧 = 498.684, 𝑅𝑠 = 0.06 𝑚 , 𝑣𝑓(1) = 0, 𝑤𝑓(1) = 0,

𝑃𝑊𝑀𝑙(1) = 0,𝑃𝑊𝑀𝑟(1) = 0, 𝑥𝑓(1) = 50, 𝑦𝑓(1) = 25, total =1000

𝜑(1) = 0 , 𝜃(1) = 𝜋/2;

Note: R is the radium of the ball;

1.2 For 𝑘 = 1 ∶ 𝑡𝑜𝑡𝑎𝑙
Step 2: Object detection

2.1 The camera obtains the position (𝑚,𝑛) of the ball in the pixel

 coordinate;

2.2 The camera measures the ball’s position (𝑋𝑐0, 𝑌𝑐0, 𝑍𝑐0) in the camera

 Coordinates

 [
𝑋(𝐾)
𝑌(𝐾)

]𝑅(𝜋/2 − 𝜑(𝑘)) [
𝑋𝑐0
𝑌𝑐0
]

 𝐿(𝑘) ← √𝑋2(𝑘) + 𝑌2(𝑘)
2

 𝜆(𝑘) ← 𝑎𝑡𝑎𝑛2(𝑋(𝑘), 𝑌(𝑘))

2.3

2.4

Step 3: Calculate the velocity and angular velocity of the follower

3.1 𝑒𝐿 ← 𝐿𝑑 − 𝐿(𝑘)
 𝑒𝜆 ← 𝜆𝑑 − 𝜆(𝑘)

28

3.2 Through P-controller for the follower, calculate 𝑣𝑓 , 𝑤𝑓

Step 4: Update the position of the follower

4.1 𝜃(𝑘 + 1) = 𝜃(𝑘) + 𝑤𝑓𝛿; % 𝛿 is the sampling time

 𝑥𝑓(𝑘 + 1) ← 𝑥𝑓(𝑘) + v𝑓cos (𝜃(𝑘 + 1))𝛿 ;

 𝑦𝑓(𝑘 + 1) ← 𝑦𝑓(𝑘) + v𝑓sin (𝜃(𝑘 + 1))𝛿 ;

4.2

4.3

Step 5: Update the bearing angular 𝜑

5.1 𝑒𝑚 ← 𝑚𝑜 −𝑚

 𝑤𝑐 ← 𝑒𝑚𝑐𝑔𝑖𝑎𝑛

 𝜑(𝑘 + 1) ← 𝜑(𝑘) + 𝑤𝑐𝛿 ;
 Go back step 2

5.2

5.3

5.4

 end

 As shown in Figure 13, the follower tracked the leader to move. In this simulation, the

trajectory of the leader robot is created by the smooth-turn model [10]. The initial position and

heading angle of the follower robot are (50,25) and 𝜋/2. The initial position and heading angle

of the sphere ball are (51,26) and 𝜋/2. Figure 14 shows that 𝑒𝐿, 𝑒𝜆 and m are close to zero,

the camera tracks the ball and keep the ball around the center of the camera view. As a result,

the follower tracks the leader at the desired position.

Figure 13 The trajectories of the follower and leader.

29

4.2 Hardware and Software Designs

This section introduces the hardware and software designs which are used in the

implementation.

4.2.1 Raspberry Pi 2

Raspberry Pi 2 (see Figure 15) is a cheap and powerful microcontroller with a 900MHz

quad-code CPU and 1 GB RAM. Raspberry Pi 2 has excellent capability to calculate data and

deal with image information. Furthermore, Raspberry Pi 2 have a friendly development

environment. Users can build a project in the Linux system of Raspberry using Pi 2 Python, c,

c++ and Java. Raspberry Pi 2 also supports the openCV library which is an open source library

for computer vision and machine learning. In addition, there are 4 USB ports and 40 GPIO pins

on Raspberry Pi 2. These interfaces make Raspberry Pi 2 connect conveniently with other

devices, such as camera, sensors. In this research, Raspberry Pi 2 is used to detect the target

and locate the position of the target in the camera frame.

Figure 14 Simulation result. 𝒆𝝀, 𝒆𝑳The formation error; L The relative distance between the

camera and the ball; m the positon of the ball in the camera view.

30

4.2.2 Arduino UNO

Arduino UNO is a user-friendly

microcontroller built on the ship

ATmega328P. As shown in Figure 16,

it just has 16 I/O pins which include 6

PWM output and 16M clock speed.

However, the UNO can work with lots

of sensors and other devices through

UART, I2C. To control motors’ speed,

Arduino UNO sends a value in the range

(0~255) to PWM output pin. In addition, the PWM output from Arduino UNO is more stable

than that from Raspberry Pi 2. In the Arduino forum, there are rich materials to help people to

study and use this microcontroller. In this project, the UNO play a big role. It calculates the

Figure 16 Arduino.

Figure 15 Raspberry Pi 2.

31

wheels’ speed with encoders which are installed on the motors’ shafts. It calculates the target’s

position for the adjustment of PWM output which decides the velocities of motors. It sends the

angular velocity of the camera servo to 16 channel PWM module which keeps the camera to

track the target.

4.2.3 16 Channel PWM /Servo Shield

As shown in Figure 17, it is a 16-channel PWM/Servo Shield. The shield assists

microcontroller to control servos by a stable PWM output. The 16 channel PWM /Servo Shield

has the following advantages. It can control 16 channel and up to 992 servos using I2C. The

shield is convenient to get commands from microcontrollers such as Arduino, Raspberry Pi

through I2C. It can automatically control servos without keeping communication with

microcontrollers so that microcontrollers can save time to execute other tasks. In this project,

the shield is used to control camera’s servo. The reason is Raspberry PI 2 cannot offer a stable

PWM output, and Arduino needs to process data as fast as possible.

Figure 17 16-channel PWM/Servo Shield.

32

4.2.4 PI Camera

PI camera (see Figure 18) is an assistant device

for Raspberry PI 2. The parameters of PI camera can be

adjusted by Raspberry PI 2 though python command

such as video formats, picture formats, and exposure

modes. To compare with other webcams, PI camera is

a cheaper and an excellent camera. The sensor

resolution for a PI camera achieves up to 2592*1944,

and its video modes can change in 1080p30, 720p60, and 640*480p60/90. PI camera is suitable

to work with openCV and Raspberry PI 2. In this project, the PI camera catches the image of

the target and sends the image information to Raspberry PI 2.

4.2.3 Rover 5 Motor Driver Board

As shown in Figure 19, it is a Rover 5 Motor Driver Board. The motor driver designed

by Dagu can drive four motors with microcontrollers, such as Arduino, Raspberry Pi. The

driver board can change the direction and speed of motors. In this research, the driver board

connects with Arduino to control the direction and speed of wheels.

4.2.4 Lynxmotion Quadrature Motor Encoder

Figure 19 Rover 5 Motor Driver Board

Figure 18 Pi camera

33

As shown in Figure 20, it is a Lynxmotion Quadrature

Motor Encoder. It includes two output signals. The encoder has

100 cycles per revolution and 400 quadrature counts per

revolution. In this research, the motor encoder accounts the speed

of wheels and sends the speed data to Arduino to calculate the

velocity and angular velocity of the follower robot.

4.2.5 OpenCV

OpenCV stands for Open Source Computer Vision Library, which includes 2500

optimized algorithm on computer vision and machine learning. It supports the current main

operation systems like Windows, Linux, and Mac OS. Meanwhile, it supports the following

languages: C++, C, Python, Java and MATLAB. It is convenient for the user to use the

algorithms of openCV on vision application so that users don’t need to build a complex

algorithm on the computer vision and machine learning every time. Also, the openCV is a free

software. In fact, many users and companies are using openCV to develop projects and

applications such as robot’s navigation and face recognition. In this project, the openCV plays

the main role to identify the sphere target from the camera view. The process of target detection

will be described in the following section.

4.3 Detecting the Target Using Raspberry Pi 2 and OpenCV

This section focuses on the process of target detection using Raspberry Pi 2 and openCV.

Raspberry Pi 2 receives image information from Pi camera and then calls for algorithms from

openCV to implement these goals: color detection, smooth image, contours of images, shape

recognition, locating the target’s center, and area calculation in the camera frame. The

remainder of this section elaborates this procedure.

4.3.1 Color Detection

Figure 20 Motor encoder

34

Color detection refers to distinguishing an object by color. Apparently, an image

consists of color components. To detect a target with a special color, it should separate an image

into color components and then select the detected color components. In this research, an image

is recorded by a Pi camera and sent to Raspberry Pi in an array of color components. The color

element is presented by RGB color model as shown in Figure 21.a. RGB stands for red, green,

and blue. In RGB color model, any color component consists of the values of these three colors.

RGB color model is used to display images on electronic devices, such as a computer, phone,

and tablet. However, it is difficult for people to dictate the RGB value of a color component.

Therefore, it needs to convert the color space of the image into HSV color space shown in

Figure 21.b. HSV stands for hue, saturation and value. The HSV color model is converted from

RGB color model. To compare it with RGB color model, it is easier for people to describe a

color component in HSV color model. Likewise, this conversation from RGB to HSV makes

the separation of color components easily.

In the implementation, the detected color is red and its HSV range is from [105, 65, 65]

to [125, 255, 255]. Furthermore, the image needs to be transformed from 3-dimension to 1-

dimension in order to reduce the calculation load to smoothen an image in next step. The pixel

 (a) RGB color space. (b) HSV color space.

 Figure 21 Illustration of RGB and HSV color space.

35

color will be white in the detected HSV range, or the pixel color will be black. Therefore, the

color image changes into a gray image. As shown in Figure 22, Our target is the red ball. The

color in the detected range changes into white and other becomes black. Obviously, the color

detection cannot distinguish the target from objects with the similar colors.

4.3.2 Smooth image

 As shown in Figure 22, the edges of the white blocks are irregular. Noises produce

edges similar to a gear edge, and impacts correct measurement of the positions and areas of

these blocks. Therefore, it is necessary to remove noises in the gray image. There are four

Figure 22 Illustration of color detection. (a) The target ball and the noise rectangle in the

normal picture. (b) The result of color detection.

Figure 23 Illustration of Midian Filtering. The edges of blocks
become smooth.

(a) (b)

36

methods to reduce noise in openCV: averaging, Gaussian Filtering, Median Filtering, and

Bilateral Filtering. In this research, the Median Filtering is chosen to blur an image and reduce

noise. The result of the smoothened image in Median Filtering is shown in Figure 23. Clearly,

from the comparison between Figure 22 and Figure 23, the edges of blocks in Figure 23 are

very smooth.

4.3.3 Contours in Images

 Contours mean boundaries of the detected object. The contour is an essential

requirement to recognize and analyze detected shapes in openCV. The method of contours is

to distinguish while block from the black background. As shown in Figure 24, the contours

present the shapes of the detected target and noise.

4.3.4 Shape Recognition

 The shape recognition is a useful approach to distinguish the detected target from noise.

Although the contours of blocks have been drawn in Figure 24, it doesn’t yet distinguish the

detected sphere ball from noise. As the contour of identified target is close to a circle, next step

is to compare contours with a circle and then obtain the shape ratios, which means the unlike

ratio between two shapes. The unlike ratio between two shapes. In this research, the contours

with shape ratio less than 0.01 identify the targets to be detected. As shown in Figure 26, the

shape ratio of the approximate circle is less than 0.01, and the shape ratio of noise is almost

Figure 24 Illustration of contours in the image. (a) Picture from camera. (b) contours of

objects.

(a) (b)

37

0.1. Sometimes, noises cause objects to have similar shapes with the shape to be detected. It is

difficult to select the target from noise just according to the shape ratio. The solution will be

described in the following section.

4.3.5 Position and Area of the Target

Thought the algorithm of the image moments in the openCV library, the position and

area of the contour are easy to be calculated. We still need to eliminate some noise which is

similar with the shape of the detected target. In fact, though color detection and shape

recognition, the area of noise is almost less than that of the detected target. Therefore, the

detected target can be enumerated by the areas of blocks.

4.4 Implementation Result

The section focuses on the implementation result of the leader-follower tacking system

using one camera and one ball. In Chapter 3, the P-controllers of the follower and camera has

been built. In Section 4.3, the approach of target detection has been described. According to

the diagram of hardware (see Figure 26), we build and test the hardware system. The desired

Figure 25 Illustration of shape recognition. The data (blue number)

are the shape ratios of contours of blocks to a circle.

38

length 𝐿𝑑 is 60 cm, and the desired angular 𝜆𝑑 is zero. The trajectories of the follower and the

ball are shown in Figure 27.

Figure 27 The trajectories of the leader and follower. The red line is the

trajectory. The red ball is the detected target.

Figure 26 Illustration of the hardware connect in the implementation.

39

Figure 28 reports the implementation result. However, the follower tracks the ball to move and

achieve the leader-follower tacking task using one camera and one ball.

According to the Figure 28, the follower tracks the ball to move. But we need to adjust the

feedback gains to improve the performance of the leader-follower tracking system.

Figure 28 Implementation result. (a), (b) The formation error. The desired distance is o.6 m.

the desired angle is zero.

(a)

(b)

40

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

 In this research, we developed a method to locate a sphere using camera vision. This

approach is used to estimate the relative position and bearing angular between the headings of

the leader and follower. This research also builds P-controllers to realize the leader-follower

tracking task using camera vision. The simulation result validates our algorithm. Then, we

implemented this algorithm in a real robot system. We develop a system for the target detection

by Pi camera, Raspberry Pi 2 and openCV.

 The results of the simulation and implementation indicate the viability of the location

method using one camera and one sphere. Meanwhile, we used our location method and built

a controller for leader-follower tracking system with reasonable performance.

 Our location approach just uses one camera and one ball and can provide the relative

position between the camera and detected target. It is convenient for users to apply this

approach on the leader-follower tracking system.

5.2 Future Work

We need still to improve the performance of the leader-follower tracking system using

camera vision. The authors will design an advanced controller to replace the simply P-

controller, such as the backstepping controller and adaptive controller, to achieve a better

tracking performance. Finally, we achieve this task that drone tracks the robot on the ground

as well as possible.

APPENDIX

DIAGRAM OF LEADER-FOLLOWER TRACKING

41

42

43

REFERENCES

Y. Gu, M. Zhou, S. Fu and Y. Wan, "Airborne WiFi networks through directional

antennae: An experimental study," 2015 IEEE Wireless Communications and

Networking Conference (WCNC), New Orleans, LA, 2015, pp. 1314-1319.

H. Kannan, V. K. Chitrakaran, D. M. Dawson and T. Burg, "Vision-Based

Leader/Follower Tracking for Nonholonomic Mobile Robots," 2007 American

Control Conference, New York, NY, 2007, pp. 2159-2164.

H. Poonawala, A. C. Satici, N. Gans and M. W. Spong, "Formation control of wheeled

robots with vision-based position measurement," 2012 American Control Conference

(ACC), Montreal, QC, 2012, pp. 3173-3178.

G. L. Mariottini, F. Morbidi, D. Prattichizzo, G. J. Pappas and K. Daniilidis, "Leader-

Follower Formations: Uncalibrated Vision-Based Localization and

Control," Proceedings 2007 IEEE International Conference on Robotics and

Automation, Roma, 2007, pp. 2403-2408.

Davison, A. J., & Murray, D. W. (1998). Mobile robot localisation using active vision

(pp. 809-825). Springer Berlin Heidelberg.

Y. Fang, X. Liu and X. Zhang, "Adaptive Active Visual Servoing of Nonholonomic

Mobile Robots," in IEEE Transactions on Industrial Electronics, vol. 59, no. 1, pp.

486-497, Jan. 2012.

“Playing with your Pixy Pet!”, https://learn.adafruit.com/pixy-pet-robot-color-vision-

follower-using-pixycam/playing-with-your-pet.

Y. Wan, K. Namuduri, Y. Zhou and S. Fu, "A Smooth-Turn Mobility Model for

Airborne Networks," in IEEE Transactions on Vehicular Technology, vol. 62, no. 7,

pp. 3359-3370, Sept. 2013.

44

Forsyth, D., & Ponce, J. (2003). Computer vision: A modern approach(p120-139).

Upper Saddle River, NJ: Prentice Hall.

Y. Wan, K. Namuduri, Y. Zhou and S. Fu, "A Smooth-Turn Mobility Model for

Airborne Networks," in IEEE Transactions on Vehicular Technology, vol. 62, no. 7,

pp. 3359-3370, Sept. 2013.

Guan, J., Deboeverie, F., Slembrouck, M., van Haerenborgh, D., van Cauwelaert, D.,

Veelaert, P., & Philips, W. (2015). Extrinsic Calibration of Camera Networks Using a

Sphere. Sensors, 15(8), 18985–19005.

X. Zhang, Y. Fang and X. Liu, "Motion-Estimation-Based Visual Servoing of

Nonholonomic Mobile Robots," in IEEE Transactions on Robotics, vol. 27, no. 6, pp.

1167-1175, Dec. 2011.

Dudek, Gregory, and Michael Jenkin. Computational Principles of Mobile Robotics(p

45-77). New York: Cambridge UP, 2000. Print.

Krishnan, R. Electric Motor Drives: Modeling, Analysis, and Control. Upper Saddle

River, NJ: Prentice Hall, 2001. Print.

