15,176 research outputs found

    Inhibition effects of paeonol on mice bearing EMT6 breast cancer through inducing rumor cell apoptosis

    Get PDF
    Paeonol, a phenolic component from the root bark of Paeonia moutan, has been identified to possess antitumor effects on mice bearing EMT6 breast cancer in our previous studies. However, the underlying mechanisms remain unknown. In the present study the molecular mechanisms of paeonol were further investigated in EMT6 mice model. The results showed that treatment of mice with 175 and 350 mg/kg/day of paeonol significantly inhibited the growth of the EMT6 tumor in mice, and induced tumor cell apoptosis which were demonstrated by light microscopy after hematoxylin and eosin staining and apoptosis analysis by flow cytometry. In addition, compared with the control group, paeonol increased the number of tumor cells in G0/G1 phase but decreased the number of cells in S and G2/M phase. Paeonol treatment (350 mg/kg body weight) also resulted in a decrease of Bcl-2 and an increase in Bax and caspase-3 expressions, which were demonstrated by immunohistochemical and western blot analysis. These results indicate that the antitumor effects of paeonol might be associated with arresting tumor cells in the G0/G1 phase, inducing cell apoptosis and regulation of the expression of Bcl-2, Bax and activation of caspase-3

    Antitumor effect of salidroside on mice bearing HepA hepatocellular carcinoma

    Get PDF
    Salidroside, a phenylpropanoid glycoside extracted from Rhodiola rosea L., has antiproliferative effects on tumour cells in mice. However it’s antitumor mechanism remains largely unknown. In this study, 4 groups of mice bearing hepatocarcinoma cells were given treatment with vehicle alone, cyclophosphamide (25 mg/kg, i.p.) and salidroside, either 100 or 200 mg/kg (p.o.) for 14 days. The morphology of tumour specimens was analysed by transmission electron microscopy. Apoptotic cells in sections of mouse tumour tissue were analysed using an in situ apoptosis kit. The expression of Bcl-2, Bax and caspase 3 mRNA were examined with RT-PCR. The results showed that the tumour weights in groups 100 or 200 mg/kg/day of salidroside were reduced significantly (45.34 and 52.48% respectively), compared to vehicle groups. Salidroside increased apoptotic cells index, e.g. in 200 mg/kg group, it was four times higher compared to the control group. Even more, treatment with salidroside decreased Bcl-2 mRNA expression and increased Bax and caspase 3 mRNA expressions. These indicated that the antitumor mechanism of salidroside may induce tumour cell apoptosis in mice by triggering the mitochondrial-dependent pathway and activation of caspase 3

    The macroeconomic and financial effects of oil price shocks

    Get PDF
    The oil price shock is considered as a major contributor to economic fluctuation. In this paper, we investigate whether the impulse responses of different macroeconomic variables and financial variables to the oil price shock and the effect of interest rates change. And we also use Granger Causality Test to evaluate the correlation between oil prices, stock markets and gold prices. Estimation results based on the U.S. data suggest that: (i) The oil price shock has a significant impact on inflation, stock markets and gold prices and it also has a short-term impact on interest rates. (ii) Co-movement of oil prices, stock markets and gold prices exist. (iii) Changing interest rates as monetary policy can induce price puzzle in order to reduce the inflation caused by the oil price shock

    Evolution of worldwide stock markets, correlation structure and correlation based graphs

    Full text link
    We investigate the daily correlation present among market indices of stock exchanges located all over the world in the time period Jan 1996 - Jul 2009. We discover that the correlation among market indices presents both a fast and a slow dynamics. The slow dynamics reflects the development and consolidation of globalization. The fast dynamics is associated with critical events that originate in a specific country or region of the world and rapidly affect the global system. We provide evidence that the short term timescale of correlation among market indices is less than 3 trading months (about 60 trading days). The average values of the non diagonal elements of the correlation matrix, correlation based graphs and the spectral properties of the largest eigenvalues and eigenvectors of the correlation matrix are carrying information about the fast and slow dynamics of correlation of market indices. We introduce a measure of mutual information based on link co-occurrence in networks, in order to detect the fast dynamics of successive changes of correlation based graphs in a quantitative way.Comment: 8 pages, 11 figure

    Kondo Phase in Twisted Bilayer Graphene -- A Unified Theory for Distinct Experiments

    Full text link
    A number of interesting physical phenomena have been discovered in magic-angle twisted bilayer graphene (MATBG), such as superconductivity, correlated gapped and gapless phases, etc. The gapped phases are believed to be symmetry-breaking states described by mean-field theories, whereas gapless phases exhibit features beyond mean field. This work, combining poor man's scaling, numerical renormalization group, and dynamic mean-field theory, demonstrates that the gapless phases are the heavy Fermi liquid state with some symmetries broken and the others preserved. We adopt the recently proposed topological heavy fermion model for MATBG with effective local orbitals around AA-stacking regions and Dirac fermions surrounding them. At zero temperature and most non-integer fillings, the ground states are found to be heavy Fermi liquids and exhibit Kondo resonance peaks. The Kondo temperature TKT_K is found at the order of 1meV. A higher temperature than TKT_K will drive the system into a metallic LM phase where disordered LM's and a Fermi liquid coexist. At integer fillings ±1,±2\pm1,\pm2, TKT_K is suppressed to zero or a value weaker than RKKY interaction, leading to Mott insulators or symmetry-breaking states. This theory offers a unified explanation for several experimental observations, such as zero-energy peaks and quantum-dot-like behaviors in STM, the Pomeranchuk effect, and the saw-tooth feature of inverse compressibility, etc. For future experimental verification, we predict that the Fermi surface in the gapless phase will shrink upon heating - as a characteristic of the heavy Fermi liquid. We also conjecture that the heavy Fermi liquid is the parent state of the observed unconventional superconductivity because the Kondo screening reduces the overwhelming Coulomb interaction (~60meV) to a rather small effective interaction (~1meV) comparable to possible weak attractive interactions.Comment: DMFT calculations for the THF model and discussions on possible symmetry-breaking states are adde

    A Performance Analysis Model of TCP over Multiple Heterogeneous Paths for 5G Mobile Services

    Full text link
    Driven by the primary requirement of emerging 5G mobile services, the demand for concurrent multipath transfer (CMT) is still prominent. Yet, multipath transport protocols are not widely adopted and TCP-based CMT schemes will still be in dominant position in 5G. However, the performance of TCP flow transferred over multiple heterogeneous paths is prone to the link quality asymmetry, the extent of which was revealed to be significant by our field investigation. In this paper, we present a performance analysis model for TCP over multiple heterogeneous paths in 5G scenarios, where both bandwidth and delay asymmetry are taken into consideration. The evaluation adopting parameters from field investigation shows that the proposed model can achieve high accuracy in practical environments. Some interesting inferences can be drawn from the proposed model, such as the dominant factor that affect the performance of TCP over heterogeneous networks, and the criteria of determining the appropriate number of links to be used under different circumstances of path heterogeneity. Thus, the proposed model can provide a guidance to the design of TCP-based CMT solutions for 5G mobile services

    Friction-induced nanofabrication method to produce protrusive nanostructures on quartz

    Get PDF
    In this paper, a new friction-induced nanofabrication method is presented to fabricate protrusive nanostructures on quartz surfaces through scratching a diamond tip under given normal loads. The nanostructures, such as nanodots, nanolines, surface mesas and nanowords, can be produced on the target surface by programming the tip traces according to the demanded patterns. The height of these nanostructures increases with the increase of the number of scratching cycles or the normal load. Transmission electron microscope observations indicated that the lattice distortion and dislocations induced by the mechanical interaction may have played a dominating role in the formation of the protrusive nanostructures on quartz surfaces. Further analysis reveals that during scratching, a contact pressure ranged from 0.4Py to Py (Py is the critical yield pressure of quartz) is apt to produce protuberant nanostructures on quartz under the given experimental conditions. Finally, it is of great interest to find that the protrusive nanostructures can be selectively dissolved in 20% KOH solution. Since the nanowords can be easily 'written' by friction-induced fabrication and 'erased' through selective etching on a quartz surface, this friction-induced method opens up new opportunities for future nanofabrication
    • …
    corecore