1,257 research outputs found

    China’s emerging global role: dissatisfied responsible great power

    Get PDF
    China has (re)emerged as a great power in a world not of its own making. The distribution of power in major organisations and the dominant norms of international interactions are deemed to unfairly favour the existing Western powers, and at times obstruct China’s ability to meet national development goals. Nevertheless, engaging the global economy has been a key source of economic growth (thus helping to maintain regime stability), and establishing China’s credentials as a responsible global actor is seen as a means of ensuring continued access to what China needs. As an emerging great power that is also still in many respects a developing country, China’s challenge is to change the global order in ways that do not cause global instability or generate crises that would damage China’s own ability to generate economic growth and ensure political stability

    The beta function of N=1 SYM in Differential Renormalization

    Get PDF
    Using differential renormalization, we calculate the complete two-point function of the background gauge superfield in pure N=1 Supersymmetric Yang-Mills theory to two loops. Ultraviolet and (off-shell) infrared divergences are renormalized in position and momentum space respectively. This allows us to reobtain the beta function from the dependence on the ultraviolet renormalization scale in an infrared-safe way. The two-loop coefficient of the beta function is generated by the one-loop ultraviolet renormalization of the quantum gauge field via nonlocal terms which are infrared divergent on shell. We also discuss the connection of the beta function to the flow of the Wilsonian coupling.Comment: 20 pages, 2 figures. Reference added, minor correction

    Dynamical localization simulated on a few qubits quantum computer

    Get PDF
    We show that a quantum computer operating with a small number of qubits can simulate the dynamical localization of classical chaos in a system described by the quantum sawtooth map model. The dynamics of the system is computed efficiently up to a time t≄ℓt\geq \ell, and then the localization length ℓ\ell can be obtained with accuracy Îœ\nu by means of order 1/Îœ21/\nu^2 computer runs, followed by coarse grained projective measurements on the computational basis. We also show that in the presence of static imperfections a reliable computation of the localization length is possible without error correction up to an imperfection threshold which drops polynomially with the number of qubits.Comment: 8 pages, 8 figure

    Uptake and transformation of steroid estrogens as emerging contaminants influence plant development

    Get PDF
    Steroid estrogens are emerging contaminants of concern due to their devastating effects on reproduction and development in animals and humans at very low concentrations. The increasing steroid estrogen in the environment all over the world contrasts very few studies for potential impacts on plant development as a result of estrogen uptake. This study evaluated the uptake, transformation and effects of estradiol (17ÎČ-E2) and ethinyl estradiol (EE2) (0.1–1000â€ŻÎŒg L−1) on lettuce. Uptake increased in leaves and roots in a dose-dependent manner, and roots were the major organ in which most of the estrogen was deposited. The transformation of estrogens to major metabolite and their further reverse biotransformation in lettuce tissue was identified. At low concentrations (0.1 and 50â€ŻÎŒg L−1) estrogens resulted in enhanced photosynthetic pigments, root growth and shoot biomass. Application of higher concentrations of estrogens (10 mg L−1) significantly reduced total root growth and development. This was accompanied by increased levels of hydrogen peroxide (H2O2), and malondialdehyde (MDA), and activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX). Taken together, these findings suggest that at low concentrations estrogens may biostimulate growth and primary metabolism of lettuce, while at elevated levels they have adverse effects

    Quantum Computing of Quantum Chaos in the Kicked Rotator Model

    Get PDF
    We investigate a quantum algorithm which simulates efficiently the quantum kicked rotator model, a system which displays rich physical properties, and enables to study problems of quantum chaos, atomic physics and localization of electrons in solids. The effects of errors in gate operations are tested on this algorithm in numerical simulations with up to 20 qubits. In this way various physical quantities are investigated. Some of them, such as second moment of probability distribution and tunneling transitions through invariant curves are shown to be particularly sensitive to errors. However, investigations of the fidelity and Wigner and Husimi distributions show that these physical quantities are robust in presence of imperfections. This implies that the algorithm can simulate the dynamics of quantum chaos in presence of a moderate amount of noise.Comment: research at Quantware MIPS Center http://www.quantware.ups-tlse.fr, revtex 11 pages, 13 figs, 2 figs and discussion adde

    Rapid Accurate Calculation of the s-Wave Scattering Length

    Get PDF
    Transformation of the conventional radial Schr\"odinger equation defined on the interval  r∈[0,∞)\,r\in[0,\infty) into an equivalent form defined on the finite domain  y(r)∈[a,b] \,y(r)\in [a,b]\, allows the s-wave scattering length asa_s to be exactly expressed in terms of a logarithmic derivative of the transformed wave function ϕ(y)\phi(y) at the outer boundary point y=by=b, which corresponds to r=∞r=\infty. In particular, for an arbitrary interaction potential that dies off as fast as 1/rn1/r^n for n≄4n\geq 4, the modified wave function ϕ(y)\phi(y) obtained by using the two-parameter mapping function r(y;rˉ,ÎČ)=rˉ[1+1ÎČtan⁥(πy/2)]r(y;\bar{r},\beta) = \bar{r}[1+\frac{1}{\beta}\tan(\pi y/2)] has no singularities, and as=rˉ[1+2πÎČ1ϕ(1)dϕ(1)dy].a_s=\bar{r}[1+\frac{2}{\pi\beta}\frac{1}{\phi(1)}\frac{d\phi(1)}{dy}]. For a well bound potential with equilibrium distance rer_e, the optimal mapping parameters are  rˉ≈re \,\bar{r}\approx r_e\, and  ÎČ≈n2−1\,\beta\approx \frac{n}{2}-1. An outward integration procedure based on Johnson's log-derivative algorithm [B.R.\ Johnson, J.\ Comp.\ Phys., \textbf{13}, 445 (1973)] combined with a Richardson extrapolation procedure is shown to readily yield high precision asa_s-values both for model Lennard-Jones (2n,n2n,n) potentials and for realistic published potentials for the Xe--e−^-, Cs_2(a\,^3\Sigma_u^+) and 3,4^{3,4}He_2(X\,^1\Sigma_g^+) systems. Use of this same transformed Schr{\"o}dinger equation was previously shown [V.V. Meshkov et al., Phys.\ Rev.\ A, {\bf 78}, 052510 (2008)] to ensure the efficient calculation of all bound levels supported by a potential, including those lying extremely close to dissociation.Comment: 12 pages, 9 figures, to appear in J. Chem. Phy

    Embryonic stem cell-derived extracellular vesicle-mimetic nanovesicles rescue erectile function by enhancing penile neurovascular regeneration in the streptozotocin-induced diabetic mouse

    Get PDF
    Extracellular vesicles (EVs) have attracted particular interest in various fields of biology and medicine. However, one of the major hurdles in the clinical application of EV-based therapy is their low production yield. We recently developed cell-derived EV-mimetic nanovesicles (NVs) by extruding cells serially through filters with diminishing pore sizes (10, 5, and 1 mu m). Here, we demonstrate in diabetic mice that embryonic stem cell (ESC)-derived EV-mimetic NVs (ESC-NVs) completely restore erectile function (similar to 96% of control values) through enhanced penile angiogenesis and neural regeneration in vivo, whereas ESC partially restores erectile function (similar to 77% of control values). ESC-NVs promoted tube formation in primary cultured mouse cavernous endothelial cells and pericytes under high-glucose condition in vitro; and accelerated microvascular and neurite sprouting from aortic ring and major pelvic ganglion under high-glucose condition ex vivo, respectively. ESC-NVs enhanced the expression of angiogenic and neurotrophic factors (hepatocyte growth factor, angiopoietin-1, nerve growth factor, and neurotrophin-3), and activated cell survival and proliferative factors (Akt and ERK). Therefore, it will be a better strategy to use ESC-NVs than ESCs in patients with erectile dysfunction refractory to pharmacotherapy, although it remains to be solved for future clinical application of ESC.11Ysciescopu

    Photon-axion conversion in intergalactic magnetic fields and cosmological consequences

    Get PDF
    Photon-axion conversion induced by intergalactic magnetic fields causes an apparent dimming of distant sources, notably of cosmic standard candles such as supernovae of type Ia (SNe Ia). We review the impact of this mechanism on the luminosity-redshift relation of SNe Ia, on the dispersion of quasar spectra, and on the spectrum of the cosmic microwave background. The original idea of explaining the apparent dimming of distant SNe Ia without cosmic acceleration is strongly constrained by these arguments. However, the cosmic equation of state extracted from the SN Ia luminosity-redshift relation remains sensitive to this mechanism. For example, it can mimic phantom energy.Comment: (14 pages, 9 eps figures) Contribution to appear in a volume of Lecture Notes in Physics (Springer-Verlag) on Axion

    f(R)f(R) gravity constrained by PPN parameters and stochastic background of gravitational waves

    Full text link
    We analyze seven different viable f(R)f(R)-gravities towards the Solar System tests and stochastic gravitational waves background. The aim is to achieve experimental bounds for the theory at local and cosmological scales in order to select models capable of addressing the accelerating cosmological expansion without cosmological constant but evading the weak field constraints. Beside large scale structure and galactic dynamics, these bounds can be considered complimentary in order to select self-consistent theories of gravity working at the infrared limit. It is demonstrated that seven viable f(R)f(R)-gravities under consideration not only satisfy the local tests, but additionally, pass the above PPN-and stochastic gravitational waves bounds for large classes of parameters.Comment: 23 pages, 8 figure
    • 

    corecore