62,784 research outputs found
Massive star evolution in close binaries:conditions for homogeneous chemical evolution
We investigate the impact of tidal interactions, before any mass transfer, on
various properties of the stellar models. We study the conditions for obtaining
homogeneous evolution triggered by tidal interactions, and for avoiding any
Roche lobe overflow during the Main-Sequence phase. We consider the case of
rotating stars computed with a strong coupling mediated by an interior magnetic
field. In models without any tidal interaction (single stars and wide
binaries), homogeneous evolution in solid body rotating models is obtained when
two conditions are realized: the initial rotation must be high enough, the loss
of angular momentum by stellar winds should be modest. This last point favors
metal-poor fast rotating stars. In models with tidal interactions, homogeneous
evolution is obtained when rotation imposed by synchronization is high enough
(typically a time-averaged surface velocities during the Main-Sequence phase
above 250 km s), whatever the mass losses. In close binaries, mixing is
stronger at higher than at lower metallicities. Homogeneous evolution is thus
favored at higher metallicities. Roche lobe overflow avoidance is favored at
lower metallicities due to the fact that stars with less metals remain more
compact. We study also the impact of different processes for the angular
momentum transport on the surface abundances and velocities in single and close
binaries. In models where strong internal coupling is assumed, strong surface
enrichments are always associated to high surface velocities in binary or
single star models. In contrast, models computed with mild coupling may produce
strong surface enrichments associated to low surface velocities. Close binary
models may be of interest for explaining homogeneous massive stars, fast
rotating Wolf-Rayet stars, and progenitors of long soft gamma ray bursts, even
at high metallicities.Comment: 21 pages, 13 figures, 3 tables, accepted for publication in Astronomy
and Astrophysic
Enhanced thermionic-dominated photoresponse in graphene Schottky junctions
Vertical heterostructures of van der Waals materials enable new pathways to
tune charge and energy transport characteristics in nanoscale systems. We
propose that graphene Schottky junctions can host a special kind of
photoresponse which is characterized by strongly coupled heat and charge flows
that run vertically out of the graphene plane. This regime can be accessed when
vertical energy transport mediated by thermionic emission of hot carriers
overwhelms electron-lattice cooling as well as lateral diffusive energy
transport. As such, the power pumped into the system is efficiently extracted
across the entire graphene active area via thermionic emission of hot carriers
into a semiconductor material. Experimental signatures of this regime include a
large and tunable internal responsivity with a non-monotonic
temperature dependence. In particular, peaks at electronic
temperatures on the order of the Schottky potential and has a large
upper limit ( when ). Our proposal opens up new approaches for engineering the
photoresponse in optically-active graphene heterostructures.Comment: 6 pages, 2 figure
Using handheld pocket computers in a wireless telemedicine system
Objectives: To see if senior emergency nurse practitioners can provide support to
inexperienced ones in a Minor Injuries Unit by using a wireless LAN system of
telemedicine transmitting images to a PDA when they were on duty. In addition,
whether such a system could be sufficiently accurate to make clinical diagnoses with
a high level of diagnostic confidence. This would permit an overall lower grade of
nurse to be employed to manage most of the cases as they arrive with a proportionate
lowering of costs.
Methods: The wireless LAN equipment could roam in the Minor Injuries Unit and
the experienced emergency Nurse practitioners could be at home, shopping or even
at a considerable distance from the centre.
Thirty pictorial images of patients who had been sent to the Review Clinic were
transmitted to a PDA various distances of one to sixteen miles from the centre. Two
senior emergency nurse practitioners viewed the images and opined on the diagnosis,
their degree of confidence in the diagnosis and their opinion of the quality of the
image.
Results: the images of patients were sharp, clear, and of diagnostic quality. The
image quality was only uncertain, as was the level of confidence of the diagnosis if
the patient was very dark skinned.
Conclusions: The wireless LAN system works with a remote PDA in this clinical
situation. However there are question marks over the availability of enough
experienced emergency nurse practitioners to staff a service that provides senior
cover for longer parts of the day and at weekends
Investigations of the g factors and local structure for orthorhombic Cu^{2+}(1) site in fresh PrBa_{2}Cu_{3}O_{6+x} powders
The electron paramagnetic resonance (EPR) g factors g_x, g_y and g_z of the
orthorhombic Cu^{2+}(1) site in fresh PrBa_{2}Cu_{3}O_{6+x} powders are
theoretically investigated using the perturbation formulas of the g factors for
a 3d^9 ion under orthorhombically elongated octahedra. The local orthorhombic
distortion around the Cu^{2+}(1) site due to the Jahn-Teller effect is
described by the orthorhombic field parameters from the superposition model.
The [CuO6]^{10-} complex is found to experience an axial elongation of about
0.04 {\AA} along c axis and the relative bond length variation of about 0.09
{\AA} along a and b axes of the Jahn-Teller nature. The theoretical results of
the g factors based on the above local structure are in reasonable agreement
with the experimental data.Comment: 6 pages, 1 figur
A Consumer-Centric Open Innovation Framework for Food and Packaging Manufacturing
This article has been archived following written permission from IGI Global.Closed innovation approaches have been employed for many years in the food industry. But, this sector recently perceives its end-user to be wary of radically new products and changes in consumption patterns. However, new product development involves not only the product itself but also the entire manufacturing and distribution network. In this paper, we present a new ICT based framework that embraces open innovation to place customers in the product development loop but at the same time assesses and eventually coordinates the entire manufacturing and supply chain. The aim is to design new food products that consumers will buy and at the same time ensure that these products will reach the consumer in time and at adequate quantity. On the product development side, our framework enables new food products that offer an integrated sensory experience of food and packaging, which encompass customization, healthy eating, and sustainability
THEORETICAL STUDIES OF BILIPROTEIN CHROMOPHORES AND RELATED BILE PIGMENTS BY MOLECULAR ORBITAL AND RAMACHANDRAN TYPE CALCULATIONS
Ramachandran calculations have been used to gain insight into steric hindrance in bile
pigments related to biliprotein chromophores. The high optical activity of denatured phycocyanin, as
compared to phycoerythrin, has been related to the asymmetric substitution at ring A, which shifts the
equilibrium towards the P-helical form of the chromophore. Geometric effects on the electronic structures
and transitions have then been studied by molecular orbital calculations for several conjugation
systems including the chromophores of phycocyanin. phytochrome P,, cations, cation radicals and
tautomeric forms. For these different chromophores some general trends can be deduced. For instance,
for a given change in the gross shape (e.g. either unfolding of the molecule from a cyclic-helical to a fully
extended geometry, or upon out-of-plane twists of the pyrrole ring A) of the molecules under study, the
predicted absorption spectra all change in a simikar way. Nonetheless, there are characteristic distinctions
between the different n-systems, both in the transition energies and the charge distribution, which
can be related to their known differences in spectroscopic properties and their reactivity
Bunching Transitions on Vicinal Surfaces and Quantum N-mers
We study vicinal crystal surfaces with the terrace-step-kink model on a
discrete lattice. Including both a short-ranged attractive interaction and a
long-ranged repulsive interaction arising from elastic forces, we discover a
series of phases in which steps coalesce into bunches of n steps each. The
value of n varies with temperature and the ratio of short to long range
interaction strengths. We propose that the bunch phases have been observed in
very recent experiments on Si surfaces. Within the context of a mapping of the
model to a system of bosons on a 1D lattice, the bunch phases appear as quantum
n-mers.Comment: 5 pages, RevTex; to appear in Phys. Rev. Let
- …