2,782 research outputs found

    Putative cell adhesion membrane protein Vstm5 regulates neuronal morphology and migration in the central nervous system

    Get PDF
    During brain development, dynamic changes in neuronal membranes perform critical roles in neuronal morphogenesis and migration to create functional neural circuits. Among the proteins that induce membrane dynamics, cell adhesion molecules are important in neuronal membrane plasticity. Here, we report that V-set and transmembrane domain-containing protein 5 (Vstm5), a cell-adhesion-like molecule belonging to the Ig superfamily, was found in mouse brain. Knock-down of Vstm5 in cultured hippocampal neurons markedly reduced the complexity of dendritic structures, as well as the number of dendritic filopodia. Vstm5 also regulates neuronal morphology by promoting dendritic protrusions that later develop into dendritic spines. Using electroporationin utero, we found that Vstm5 overexpression delayed neuronal migration and induced multiple branches in leading processes during corticogenesis. These results indicate that Vstm5 is a new cell-adhesion-like molecule and is critically involved in synaptogenesis and corticogenesis by promoting neuronal membrane dynamics.SIGNIFICANCE STATEMENTNeuronal migration and morphogenesis play critical roles in brain development and function. In this study, we demonstrate for the first time that V-set and transmembrane domain-containing protein 5 (Vstm5), a putative cell adhesion membrane protein, modulates both the position and complexity of central neurons by altering their membrane morphology and dynamics. Vstm5 is also one of the target genes responsible for variations in patient responses to treatments for major depressive disorder. Our results provide the first evidence that Vstm5 is a novel factor involved in the modulation of the neuronal membrane and a critical element in normal neural circuit formation during mammalian brain development.</jats:p

    The Intestinal Spirochete Brachyspira pilosicoli Attaches to Cultured Caco-2 Cells and Induces Pathological Changes

    Get PDF
    BACKGROUND:Brachyspira pilosicoli is an anaerobic spirochete that has received relatively little study, partly due to its specialized culture requirements and slow growth. This bacterium colonizes the large intestine of various species, including humans; typically, a dense layer of spirochete cells may be found intimately attached by one cell end to the surface of colonic enterocytes. Colonized individuals may develop colitis, but the mechanisms involved are not understood. The current study aimed to develop an in vitro model to investigate this process. METHODOLOGY/PRINCIPAL FINDINGS:Four strains of B. pilosicoli were incubated at a high multiplicity of infection with monolayers of a human colonic adenocarcinoma cell line (Caco-2 cells). One strain isolated from a pig (95/1000) and one from a human (WesB) attached to the monolayers. Colonization increased with time, with the Caco-2 cell junctions being the initial targets of attachment. By electron microscopy, individual spirochete cells could be seen to have one cell end invaginated into the Caco-2 cell membranes, with the rest of the spirochete draped over the Caco-2 cell surface. After 6 h incubation, the monolayer was covered with a layer of spirochetes. Colonized monolayers demonstrated a time-dependent series of changes: staining with labelled phalloidin identified accumulation of actin at the cell junctions; ZO-1 staining revealed a loss of Caco-2 tight junction integrity; and Hoechst staining showed condensation and fragmentation of nuclear material consistent with apoptosis. Using quantitative reverse transcription PCR, the colonized monolayers demonstrated a significant up-regulation of interleukin-1beta (IL-1beta) and IL-8 expression. B. pilosicoli sonicates caused significant up-regulation of IL-1beta, TNF-alpha, and IL-6, but culture supernatants and non-pathogenic Brachyspira innocens did not alter cytokine expression. CONCLUSIONS/SIGNIFICANCE:The changes induced in the Caco-2 cells provide evidence that B. pilosicoli has pathogenic potential, and give insights into the likely in vivo pathogenesis

    Highly circularly polarized white light using a combination of white polymer light-emitting diode and wideband cholesteric liquid crystal reflector

    Get PDF
    We present a simple and intriguing device that generates highly circularly polarized white light. It comprises white polymer light-emitting diodes (WPLEDs) attached to a wideband cholesteric liquid crystal (CLC) reflector with a wide photonic bandgap (PBG) covering the visible range. The degree of circular polarization realized is very high over the visible range. The wide PBG was realized by introducing a gradient in pitch of the cholesteric helix by controlling the twisting power within the CLC medium. WPLEDs fabricated using a ternary (red, green, and blue) fluorescent polymer blend with the same moiety showed a low turn-on voltage, high brightness, high efficiency, and good color stability.open0

    Numerical Test of Born-Oppenheimer Approximation in Chaotic Systems

    Full text link
    We study the validity of the Born-Oppenheimer approximation in chaotic dynamics. Using numerical solutions of autonomous Fermi accelerators, we show that the general adiabatic conditions can be interpreted as the narrowness of the chaotic region in phase space.Comment: 5 pages, 5 figures, accepted for publication in Phys. Lett.

    Hybrid organic-inorganic light-emitting electrochemical cells using fluorescent polymer and ionic liquid blend as an active layer

    Get PDF
    We demonstrate enhanced device performance by using a blend of emissive polymer and mobile ionic liquid molecules in hybrid organic-inorganic polymeric light-emitting electrochemical cells with high air stability. The mobile anions and cations redistributed near each electrode/active layer interface make ohmic contacts, thereby enhancing current density and electroluminescence efficiency at relatively low operating voltage.open12

    Efficient hybrid organic-inorganic light emitting diodes with self-assembled dipole molecule deposited metal oxides

    Get PDF
    We investigate the effect of self-assembled dipole molecules (SADMs) on ZnO surface in hybrid organic-inorganic polymeric light-emitting diodes (HyPLEDs). Despite the SADM being extremely thin, the magnitude and orientation of SADM dipole moment effectively influenced the work function of the ZnO. As a consequence, the charge injection barrier between the conduction band of the ZnO and the lowest unoccupied molecular orbital of poly(9,9(')-dioctylfluorene)-co-benzothiadiazole could be efficiently controlled resulting that electron injection efficiency is remarkably enhanced. The HyPLEDs modified with a negative dipolar SADM exhibited enhanced device performances, which correspond to approximately a fourfold compared to those of unmodified HyPLEDs.open442

    Novel Antidepressant-Like Activity of Caffeic Acid Phenethyl Ester Is Mediated by Enhanced Glucocorticoid Receptor Function in the Hippocampus

    Get PDF
    Caffeic acid phenethyl ester (CAPE) is an active component of propolis that has a variety of potential pharmacological effects. Although we previously demonstrated that propolis has antidepressant-like activity, the effect of CAPE on this activity remains unknown. The present study assessed whether treatment with CAPE (5, 10, and 20 µmol/kg for 21 days) has an antidepressant-like effect in mice subjected to chronic unpredictable stress via tail suspension (TST) and forced swim (FST) tests. CAPE administration induced behaviors consistent with an antidepressant effect, evidenced by decreased immobility in the TST and FST independent of any effect on serum corticosterone secretion. Western blots, conducted subsequent to behavioral assessment, revealed that CAPE significantly decreased glucocorticoid receptor phosphorylation at S234 (pGR(S234)), resulting in an increased pGR(S220/S234) ratio. We also observed negative correlations between pGR(S220)/(S234) and p38 mitogen-activated protein kinase (p38MAPK) phosphorylation, which was decreased by CAPE treatment. These findings suggest that CAPE treatment exerts an antidepressant-like effect via downregulation of p38MAPK phosphorylation, thereby contributing to enhanced GR function

    Development of Complement Factor H-Based Immunotherapeutic Molecules in Tobacco Plants Against Multidrug-Resistant Neisseria gonorrhoeae

    Get PDF
    Novel therapeutics against the global threat of multidrug-resistant Neisseria gonorrhoeae are urgently needed. Gonococci possess several mechanisms to evade killing by human complement, including binding of factor H (FH), a key inhibitor of the alternative pathway. FH comprises 20 short consensus repeat (SCR) domains organized in a head-to-tail manner as a single chain. N. gonorrhoeae binds two regions in FH; domains 6 and 7 and domains 18 through 20. We designed a novel anti-infective immunotherapeutic molecule that fuses domains 18-20 of FH containing a D-to-G mutation in domain 19 at position 1119 (called FH*) with human IgG1 Fc. FH*/Fc retained binding to gonococci but did not lyse human erythrocytes. Expression of FH*/Fc in tobacco plants was undertaken as an alternative, economical production platform. FH*/Fc was expressed in high yields in tobacco plants (300-600 mg/kg biomass). The activities of plant- and CHO-cell produced FH*/Fc against gonococci were similar in vitro and in the mouse vaginal colonization model of gonorrhea. The addition of flexible linkers [e.g., (GGGGS)2 or (GGGGS)3] between FH* and Fc improved the bactericidal efficacy of FH*/Fc 2.7-fold. The linkers also improved PMN-mediated opsonophagocytosis about 11-fold. FH*/Fc with linker also effectively reduced the duration and burden of colonization of two gonococcal strains tested in mice. FH*/Fc lost efficacy: i) in C6(-/-) mice (no terminal complement) and ii) when Fc was mutated to abrogate complement activation, suggesting that an intact complement was necessary for FH*/Fc function in vivo. In summary, plant-produced FH*/Fc represent promising prophylactic or adjunctive immunotherapeutics against multidrug-resistant gonococci

    ?????? ????????? ?????? ????????? ?????? ?????????????????? ?????? ??????

    Get PDF
    Achieving efficient electron transport is challenging owing to the large energy barrier between the conduction band of n-type metal oxide and the lowest unoccupied molecular orbital (LUMO) of the emissive layer in inverted polymer light-emitting diodes (PLEDs) or the active layer in inverted polymer solar cells (PSCs), which results in unbalanced charge transport, leading to low device efficiencies. Herein, we have demonstrated that the device performance could be enhanced in both PLEDs and PSCs by treating either the interface between the electron transport layer (ETL) and the emissive layer in PLEDs or the active layers with self-assembled dipole monolayer (SADM), ionic liquid molecules (ILM) and polar solvent (PS). The interface engineering results in a reduction of the energy barrier, which results in enhanced electron transport in both devices. Especially, optimized PLEDs and PSCs show an external quantum efficiency (EQE) of 1.38% and a power conversion efficiency (PCE) of 4.21%, which are enhanced by approximately 138- and 1.37-fold, respectively, compared to the reference devices
    corecore