19,071 research outputs found

    Application of a multiscale maximum entropy image restoration algorithm to HXMT observations

    Full text link
    This paper introduces a multiscale maximum entropy (MSME) algorithm for image restoration of the Hard X-ray Modulation Telescope (HXMT), which is a collimated scan X-ray satellite mainly devoted to a sensitive all-sky survey and pointed observation in 1-250 keV. The novelty of the MSME method is to use wavelet decomposition and multiresolution support to control noise amplification in the different scales. And our work is focused on the application and modification of this method to restore diffuse sources detected by HXMT scanning observation. And an improved method, ensemble multiscale maximum entropy (EMSME) algorithm, is proposed to alleviate the problem of mode mixing exiting in MSME. Simulation have been performed on the detection of the diffuse source Cen A by HXMT in the all-sky survey mode. The results show that the MSME method is adapted to the deconvolution task of HXMT for diffuse source detection and the improved method could suppress noise and improve the correlation and signal-to-noise ratio, thus proving itself a better algorithm for image restoration. Through one all-sky survey, HXMT could reach a capacity of detecting a diffuse source with maximum differential flux of 0.5 mCrab.Comment: 8 pages, 10 figures, 1 tabl

    Weak measurement combined with quantum delayed-choice experiment and implementation in optomechanical system

    Full text link
    Weak measurement [1,19] combined with quantum delayed-choice experiment that use quantum beam splitter instead of the beam splitter give rise to a surprising amplification effect, i.e., counterintuitive negative amplification effect. We show that this effect is caused by the wave and particle behaviours of the system to be and can't be explained by a semiclassical wave theory, due to the entanglement of the system and the ancilla in quantum beam splitter. The amplification mechanism about wave-particle duality in quantum mechanics lead us to a scheme for implementation of weak measurement in optomechanical system

    Simulation of the In-flight Background for HXMT/HE

    Full text link
    The Hard X-ray Modulation Telescope (HXMT) is a broad band X-ray astronomical satellite from 1 to 250 keV. Understanding the X-ray background in detail will help to achieve a good performance of the instrument. In this work, we make use of the mass modelling technique to estimate the background of High Energy Telescope (HE) aboard HXMT. It consists of three steps. First, we built a complete geometric model of HXMT. Then based on the investigation about the space environment concerning HXMT low-earth orbit, in our simulation we considered cosmic rays, cosmic X-ray background (CXB), South Atlantic Anomaly (SAA) trapped particles, the albedo gamma and neutrons from interaction of cosmic rays with the Earth's atmosphere. Finally, the Shielding Physics List supplied by Geant4 collaborations was adopted. According to our simulation, (1) the total background of HXMT/HE is about 540 count/s on average over 20-250 keV energy band after 100 days in orbit; (2) the delayed component caused by cosmic rays and SAA trapped particles dominates the full energy band of HXMT/HE; (3) some emission lines are prominent in the background continuum spectrum and will be used for in-orbit calibration; (4) the estimated sensitivity is approximately 0.1 mCrab at 50 keV with an exposure of 10610^{6} s

    Elliptic flow splitting as a probe of the QCD phase structure at finite baryon chemical potential

    Get PDF
    Using a partonic transport model based on the 3-flavor Nambu-Jona-Lasinio model and a relativistic hadronic transport model to describe, respectively, the evolution of the initial partonic and the final hadronic phase of heavy-ion collisions at energies carried out in the Beam-Energy Scan program of the Relativistic Heavy Ion Collider, we have studied the effects of both the partonic and hadronic mean-field potentials on the elliptic flow of particles relative to that of their antiparticles. We find that to reproduce the measured relative elliptic flow differences between nucleons and antinucleons as well as between kaons and antikaons requires a vector coupling constant as large as 0.5 to 1.1 times the scalar coupling constant in the Nambu-Jona-Lasinio model. Implications of our results in understanding the QCD phase structure at finite baryon chemical potential are discussed.Comment: 5 pages, 4 figures, discussions added, version accepted by Phys. Rev. Let
    corecore