8 research outputs found

    Prediction of the fuel economy potential for a skutterudite thermoelectric generator in light-duty vehicle applications

    Get PDF
    © 2018 The Authors Thermoelectric generators (TEGs) have the characteristics of low maintenance, silent operation, stability, and compactness, which make them outstanding devices for waste heat recovery in light-duty vehicles. Significant strides have been made in the high temperature (300–800 °C) thermoelectric materials and recent work is beginning to translate those material improvements into TEG performance. Recently developed modules that incorporate new, competitive formulations of skutterudite form the basis for this study. Vehicular TEGs have not had real commercial applications yet and faced commercialization challenges. Simply estimating the fuel saving potential from the TEG output is not sufficient and due consideration must also be given to the system integration effects. Thus, a new approach for predicting the fuel saving potential of a vehicular TEG while also considering integration effects is developed in this paper. The prediction is based on a recently developed high temperature skutterudite thermoelectric modules [1]. Based on this method, the benefit of a skutterudite TEG is investigated by balancing the benefits with the added complexity of a TEG and improvement measures are explored. Based on two scenarios of the TEG integrated in different positions of a conventional light-duty vehicle, a semi-empirical model is developed, which includes a quasi-static vehicle model, a dynamic exhaust model, a dynamic coolant model, and a dynamic TEG model. Four integration effects: the additional mass, the power consumption of an electric circulation pump, the effect of exhaust back-pressure and the energy loss in the DC-DC converter, are studied in the semi-empirical model. The evaluation results show the TEG installation position has a significant influence on the fuel saving potential due to the higher quality of the exhaust gas. Placing the TEG closer to the exhaust manifold can increase fuel saving potential by 50%. The four integration effects taken together cause a 25% reduction of fuel saving potential. The energy loss in DC-DC convector and added weight are the main contributors to this reduction. An optimised design for the TEG installation operating under an optimised control strategy delivers a fuel consumption reduction of 4% over the constant-speed 120 km/h driving cycle

    A dynamic model for thermoelectric generator applied to vehicle waste heat recovery

    Get PDF
    Waste heat recovery using a thermoelectric generator (TEG) is a promising approach for vehicle original equipment manufacturers to reduce fuel consumption and lower CO2 emissions. A TEG can convert otherwise wasted thermal energy from engines to electricity directly for use in the vehicle systems. This paper focuses on the development of a dynamic model of TEG system designed for vehicle waste heat recovery, which is made up of counter-flow heat exchangers (HXRs) and commercial thermoelectric modules (TEMs). The model is built from thermoelectric materials into a TEM and then into a TEG system. Compared to other TEG models, the tuning and validation process of the proposed model is more complete. Experiments are done on both a TEM test rig and a heavy-duty diesel engine, which is equipped with a prototype TEG on the exhaust gas recirculation (EGR) path. Simulations of steady-state operating points as well as the response to typical engine cycle test show good agreement with experimental data. A TEG installed upstream of the after-treatment system in a heavy-duty truck has been modelled to predict the temperatures and power output in a dynamic driving cycle. The simulation results of temperatures show the model can be used as a basis to develop a control system for dynamic operation to ensure safety operation of TEG and efficient operation of the after-treatment system. A comparison of power output of the systems under different scenarios underlines the importance of integration of TEM with HXRs. Based on the simulation results, around 20% average power output increase can be expected by optimizing the thermal contact conductance and the heat transfer coefficient of hot side HXR

    A comparison of four modelling techniques for thermoelectric generator

    Get PDF
    The application of state-of-art thermoelectric generator (TEG) in automotive engine has potential to reduce more than 2% fuel consumption and hence the CO2 emissions. This figure is expected to be increased to 5%~10% in the near future when new thermoelectric material with higher properties is fabricated. However, in order to maximize the TEG output power, there are a few issues need to be considered in the design stage such as the number of modules, the connection of modules, the geometry of the thermoelectric module, the DC-DC converter circuit, the geometry of the heat exchanger especially the hot side heat exchanger etc. These issues can only be investigated via a proper TEG model. The authors introduced four ways of TEG modelling which in the increasing complexity order are MATLB function based model, MATLAB Simscape based Simulink model, GT-power TEG model and CFD STAR-CCM+ model. Both Simscape model and GT-Power model have intrinsic dynamic model performance. MATLAB function based model and STAR-CCM+ model can be developed to have only steady state performance or to include dynamic performance. Steady state model can be used in quick assessment of TEG performance and for initial design optimization. However, only dynamic model can give the accurate prediction of TEG output during engine transient cycles. This paper also demonstrates finding the answers to three TEG related questions using STAR-CCM+, Simscape and MATLAB function based Simulink model respectively

    The potential of thermoelectric generator in parallel hybrid vehicle applications

    Get PDF
    This paper reports on an investigation into the potential for a thermoelectric generator (TEG) to improve the fuel economy of a mild hybrid vehicle. A simulation model of a parallel hybrid vehicle equipped with a TEG in the exhaust system is presented. This model is made up by three sub-models: a parallel hybrid vehicle model, an exhaust model and a TEG model. The model is based on a quasi-static approach, which runs a fast and simple estimation of the fuel consumption and CO2 emissions. The model is validated against both experimental and published data. Using this model, the annual fuel saving, CO2 reduction and net present value (NPV) of the TEG’s life time fuel saving are all investigated. The model is also used as a flexible tool for analysis of the sensitivity of vehicle fuel consumption to the TEG design parameters. The analysis results give an effective basis for optimization of the TEG design

    Improved thermoelectric generator performance using high temperature thermoelectric materials

    Get PDF
    Thermoelectric generator (TEG) has received more and more attention in its application in the harvesting of waste thermal energy in automotive engines. Even though the commercial Bismuth Telluride thermoelectric material only have 5% efficiency and 250°C hot side temperature limit, it is possible to generate peak 1kW electrical energy from a heavy-duty engine. If being equipped with 500W TEG, a passenger car has potential to save more than 2% fuel consumption and hence CO2 emission reduction. TEG has advantages of compact and motionless parts over other thermal harvest technologies such as Organic Rankine Cycle (ORC) and Turbo-Compound (TC). Intense research works are being carried on improving the thermal efficiency of the thermoelectric materials and increasing the hot side temperature limit. Future thermoelectric modules are expected to have 10% to 20% efficiency and over 500°C hot side temperature limit. This paper presents the experimental synthesis procedure of both p-type and n-type skutterudite thermoelectric materials and the fabrication procedure of the thermoelectric modules using this material. These skutterudite materials were manufactured in the chemical lab in the University of Reading and then was fabricated into modules in the lab in Cardiff University. These thermoelectric materials can work up to as high as 500°C temperature and the corresponding modules can work at maximum 400°C hot side temperature. The performance loss from materials to modules has been investigated and discussed in this paper. By using a validated TEG model, the performance improvement using these modules has been estimated compared to commercial Bisemous Telluride module

    System design considerations for thermoelectric energy recovery

    No full text
    Authoritative account of recent developments in thermoelectric materials and devices for power energy harvesting applications, ideal for researchers and industrialists in materials science

    A Comparison of Four Modelling Techniques for Thermoelectric Generator

    No full text
    The application of state-of-art thermoelectric generator (TEG) in automotive engine has potential to reduce more than 2% fuel consumption and hence the CO2 emissions. This figure is expected to be increased to 5%~10% in the near future when new thermoelectric material with higher properties is fabricated. However, in order to maximize the TEG output power, there are a few issues need to be considered in the design stage such as the number of modules, the connection of modules, the geometry of the thermoelectric module, the DC-DC converter circuit, the geometry of the heat exchanger especially the hot side heat exchanger etc. These issues can only be investigated via a proper TEG model. The authors introduced four ways of TEG modelling which in the increasing complexity order are MATLB function based model, MATLAB Simscape based Simulink model, GT-power TEG model and CFD STAR-CCM+ model. Both Simscape model and GT-Power model have intrinsic dynamic model performance. MATLAB function based model and STAR-CCM+ model can be developed to have only steady state performance or to include dynamic performance. Steady state model can be used in quick assessment of TEG performance and for initial design optimization. However, only dynamic model can give the accurate prediction of TEG output during engine transient cycles. This paper also demonstrates finding the answers to three TEG related questions using STAR-CCM+, Simscape and MATLAB function based Simulink model respectively

    The Potential of Thermoelectric Generator in Parallel Hybrid Vehicle Applications

    No full text
    This paper reports on an investigation into the potential for a thermoelectric generator (TEG) to improve the fuel economy of a mild hybrid vehicle. A simulation model of a parallel hybrid vehicle equipped with a TEG in the exhaust system is presented. This model is made up by three sub-models: a parallel hybrid vehicle model, an exhaust model and a TEG model. The model is based on a quasi-static approach, which runs a fast and simple estimation of the fuel consumption and CO2 emissions. The model is validated against both experimental and published data. Using this model, the annual fuel saving, CO2 reduction and net present value (NPV) of the TEG’s life time fuel saving are all investigated. The model is also used as a flexible tool for analysis of the sensitivity of vehicle fuel consumption to the TEG design parameters. The analysis results give an effective basis for optimization of the TEG design
    corecore