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Abstract 

This paper reports on an investigation into the potential for a 

thermoelectric generator (TEG) to improve the fuel economy of a 

mild hybrid vehicle. A simulation model of a parallel hybrid vehicle 

equipped with a TEG in the exhaust system is presented. This model 

is made up by three sub-models: a parallel hybrid vehicle model, an 

exhaust model and a TEG model. The model is based on a quasi-

static approach, which runs a fast and simple estimation of the fuel 

consumption and CO2 emissions. The model is validated against both 

experimental and published data. Using this model, the annual fuel 

saving, CO2 reduction and net present value (NPV) of the TEG’s life 

time fuel saving are all investigated. The model is also used as a 

flexible tool for analysis of the sensitivity of vehicle fuel 

consumption to the TEG design parameters. The analysis results give 

an effective basis for optimization of the TEG design. 

Introduction 

Currently 14% of global greenhouse gas emissions are from 

transportation [1]. In order to reduce greenhouse gas emissions, a 

number of CO2 regulations for the road transport sector have been 

proposed around the world. In the EU, the law requires that by 2020, 

the fleet average to be achieved by all new cars is 95 grams of CO2 

per kilometer [2]. In the US, the Environment Protection Agency 

(EPA) and National Highway Traffic Safety Administration (NHTSA) 

raised the requirement  for fuel economy of new passenger vehicles 

to 54.5 miles per gallon for the years 2017-2025 [3]. In Japan, the 

Top Runner program set 20.3 km per liter of fuel as the fuel 

efficiency target of passenger cars for 2020[4]. In the face of these 

internationally tightened requirements and regulations for passenger 

cars, the improvement of fuel economy and the development of 

alternative fuels has been a focus of research and design efforts.   

Based on the typical energy flow path of an internal combustion 

engine (ICE), approximately one third of the energy is discharged by 

exhaust gas. Due to this great potential of waste heat recovery (WHR) 

in automotive, many efforts have been made in this field during the 

last few years, such as turbo-compounding [5], Rankine cycles [6], 

thermoelectric generators (TEG) [7], thermochemical recuperation 

(TCR) [8], and Stirling engines [9]. TEG has attracted substantial 

interest because of its advantage of silent operation, and compactness. 

Most of the current studies focus on the integration of TEG with 

conventional vehicles, using it to replace or relieve the alternator 

[7,10]. However, the use of a TEG in hybrids can be an especially 

desirable integration in the future where the number of hybrid 

vehicles is rising rapidly [11].  

The main objectives of this paper: 

 Using a simulation model of a TEG integrated in a hybrid 

vehicle to investigate the potential of fuel saving and CO2 

reduction. 

 Identify the main TEG design parameters’ influence on fuel 

saving by means of a sensitivity analysis.  

The body structure of this paper starts by highlighting advantages, 

limitations, and related research of the TEG integration with hybrid 

vehicle. The simulation model, which is made up by three sub-

models, is displayed in the section of model structure. The following 

section presents the model validation. In the section showing 

simulation results, the annual fuel saving, CO2 reduction and net 

present value (NPV) of the TEG’s life time fuel saving are calculated 

based on simulation results. In the following section, a sensitivity 

analysis is carried out for the whole vehicle. Finally, the last section 

presents the main conclusion. 

Potential for TEG in Hybrid Vehicle 

The use of TEG in hybrid vehicles has many advantages over using it 

in conventional ICE vehicles. According to Roland Berger’s report 

[11], the new vehicle sales market share of hybrid vehicles will 

increase significantly in the future, while the market share for the 

conventional ICE vehicles will shrink. Therefore, there is reason to 

believe that there will be a promising market for TEG integrated with 

hybrid vehicles. In a conventional ICE vehicle, the power generated 

by TEG can only be used when the electricity is needed in the vehicle. 

In hybrids, the electrical energy can be used directly for propulsion 

and the more energy recovered from the exhaust, the longer the motor 

can assist the engine. Vijayagopal et al [12] conducted a simulation 

analysis for the benefits of TEG varied with the type of vehicle: a 

conventional vehicle, a mild hybrid and a full hybrid. This study has 

shown that although the average power of TEG in conventional 

vehicle is higher than both two hybrid vehicles, the mild hybrid 

vehicle has the greatest fuel economy improvements because of its 

effective use of the recovered energy.  

The main challenge and limitation for the integration of TEG with 

hybrid vehicle is the intermittent engine operation and lower total 

waste heat relative to a conventional vehicle. However, Kerstin et al 

[13] show that the total exhaust energy in hybrid vehicles is indeed 

less than in conventional vehicles, but because of high engine load, 

the exhaust temperature in hybrid operation is higher, which results 

in a high efficiency of TEG. Additionally, there are no conditions 

when either exhaust flow rate or temperature are low, and in general 

the number of operating points is fewer compared with engines in a 

conventional powertrain. Therefore, the design operating point is 

close to the maximum operating point and there is no need to bypass 

the exhaust flow. 
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Model Structure 

As can be seen in Figure 1, the simulation model of hybrid vehicle 

equipped with TEG is made up by three sub-models: a parallel hybrid 

vehicle model, an exhaust model and a TEG model. The parallel 

hybrid vehicle model is used to calculate the engine and motor’s load 

and speed, fuel consumption and electrical energy consumption and 

generation based on the chosen driving cycle. The exhaust energy is 

computed at the exhaust model based on the engine speed and load. 

TEG model predicts the power output from recovering the exhaust 

energy and stores it in the battery. The energy balance of the whole 

system is controlled by the control system in the parallel hybrid 

vehicle model, using the equivalent consumption minimization 

strategy (ECMS) [14].  

 

Figure 1. Model structure 

All the three models are built in the Quasi Static Simulation (QSS) 

toolbox [15] in Matlab/Simulink. The overview of the hybrid vehicle 

model, exhaust model and TEG model are all shown in Appendix A. 

The QSS toolbox can permit a fast and simple estimation of the fuel 

consumption and electrical energy consumption and generation using 

backward formulations. Thus, the performance of hybrid vehicle 

respectively with and without TEG can both be modelled and 

compared in the QSS model. 

Model Parameters 

The New European Driving Cycle (NEDC) is used as the driving 

cycle for the calculation of fuel consumption and CO2 emission. The 

D segment Audi A6 E-Tron is selected for the simulation study and 

its parameters are shown in Table 1. This selection is based on two 

principles:  

 Large segment vehicles usually have a significant impact on the 

fleet average CO2 emission requirement for manufacturers.  

 The Audi A6 has high popularity and space to absorb the 

incremental cost.  

In this model, it is assumed that a TEG is installed after the catalystic 

convertor so that it has no influence on the catalystic reaction. The 

parameters of TEG system are listed in Table 2. The parameters for 

TEG system can be divided into three categories: heat exchanger 

parameters, thermoelectrical module (TEM) parameters, and coolant 

parameters. The parameter selection for respectively TEM and heat 

exchanger are based on references [16-17]. Figure 2 shows the 

structure of the TEG system. The size of TEG constrained to 

0.3m×0.24m×0.1m with TEMs on both sides of the hot side heat 

exchanger measuring 0.3m×0.24m×0.04m. 24 offset strip fins are 

used in hot side heat exchanger and they increase the total heat 

transfer area of each heat exchanger to around 0.7𝑚2.  Based on 

reference [16], the average heat transfer coefficients for hot side and 

cold side heat exchanger are respectively 120 and 105 W/m2 K. 

 

Figure 2 The structure of the TEG system 

The simulation is based on high temperature thermoelectrical 

material Skutterudites materials working at a Z𝑇𝑚 value of 0.7[16]. 

Based on reference [17], the average thermal resistance of a 

Skutterudites TEM with the size of 16mm×13m×2mm is 11K/W.  

Since the Skutteruduite modules can be fabricated in different sizes 

and with different thermal resistances, instead of defining the number 

of TEMs, a fill factor 𝐹 is defined as  

𝐹 =
𝑛𝑇𝐸𝑀𝐴𝑇𝐸𝑀

2𝐴𝐻𝑋𝑅
    (1) 

where 𝑛𝑇𝐸𝑀 is number of TEMs in heat exchanger. 𝐴𝑇𝐸𝑀 is area of a 

TEM and 𝐴𝐻𝑋𝑅 is area of a heat exchanger surface. 

Table 1. Specification for Audi A6 E-Tron 

Curb weight (𝑚𝑣) kg 1520 

Drag coefficient (𝐷𝑐) - 0.29 

Vehicle frontal area (𝐴𝑓) m² 2.26 

Tire radius (𝑅𝑟) m  0.326 

Tire inertia (𝐼𝑟) kg∙m² 1.136 

Engine Displacement (𝑉𝑒) l 2 

Engine Type - Gasoline 

Engine inertia (𝐼𝑒) kg∙m² 0.2 

Engine gear ratio (𝑟𝑒) - 13.75/7.698/5.336/3.994/ 

3.198/2.738 

Motor gear ratio (𝑟𝑚) - 3.32-12.38 

Engine power (𝑃𝑒) kW 155 

Motor power (𝑃𝑚) kW 40 

Auxiliary power (𝑃𝑎𝑢) kW 0.85 
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Table 2. Specification for TEG 

TEG install position after catalytic convertor 

TEG weight 𝑀𝑇𝐸𝐺 kg 20 

Size of a heat exchanger 𝑚3 0.38×0.24×0.04 

Heat transfer area 𝐴𝑇𝐸𝐺 𝑚2 0.7 

Heat transfer coefficient of hot side heat 

exchanger 𝑈ℎ 
W/𝑚2 K 120 

Heat transfer coefficient of cold side heat 

exchanger 𝑈𝑐 
W/𝑚2 K 105 

Figure of merit ZT - 0.7 

Size of a TEM 𝑚3 0.016×0.013×0.002 

Thermal resistance of a TEM 𝑅𝑇𝐸𝑀 K/W 11 

Fill factor of TEMs in heat exchanger F - 0.52 

Coolant mass flow rate  �̇�𝑐𝑜𝑙 kg/s 0.1 

Coolant temperature 𝑇𝑐𝑜𝑙 𝐾 293 

 

To tune and validate the model, test data is collected from engine 

laboratory and published papers. The data include dynamic exhaust 

data of a BMW 530i six-cylinder gasoline in NEDC cycle [10] and 

TEG test data taken from a CAT C6.6 ACERT diesel engine. 

 

Vehicle Model 

The vehicle model used here is a parallel hybrid vehicle model using 

the ECMS control strategy [14]. The diagram of the parallel hybrid 

powertrain considered is shown in Figure 3. 

 
Figure 3. Diagram of the parallel hybrid vehicle 

Based on the quasistatic approach, the wheel speed 𝜔𝑤 and torque 𝑇𝑤 

of each instant are calculated so that they meet the driving cycle’s 

demand. At the power split device (PSD), the basic relationship of 

the torque balance is 

𝑇𝑤(𝑡) = 𝑇𝑓𝑝𝑎𝑡ℎ(𝑡) + 𝑇𝑒𝑝𝑎𝑡ℎ(𝑡)   (2) 

In the fuel path, based on the gear ratio of the engine 𝑟𝑒, the engine 

torque 𝑇𝑖𝑐(𝑡) and speed 𝜔𝑖𝑐(𝑡) can be calculated as follow: 

𝑇𝑖𝑐(𝑡) =
𝑇𝑓𝑝𝑎𝑡ℎ(𝑡)

𝑟𝑒
    (3) 

𝜔𝑖𝑐(𝑡) = 𝜔𝑤(𝑡)𝑟𝑒    (4) 

The fuel consumption of the engine �̇�𝑓(𝑡) is calculated as a tabulated 

function of engine speed 𝜔𝑖𝑐  and torque 𝑇𝑖𝑐 

�̇�𝑓(𝑡) = 𝑓𝑖𝑐(𝑇𝑖𝑐(𝑡), 𝜔𝑖𝑐(𝑡))    (5) 

In the electrical path, the motor torque 𝑇𝑒𝑚(𝑡) and speed 𝜔𝑒𝑚(𝑡) can 

also be calculated according to the gear ratio of the gearbox 𝑟𝑚 

𝑇𝑒𝑚(𝑡) =
𝑇𝑒𝑝𝑎𝑡ℎ(𝑡)

𝑟𝑚
    (6) 

𝜔𝑒𝑚(𝑡) = 𝜔𝑤(𝑡)𝑟𝑚    (7) 

The output power of the battery 𝑃𝑏(𝑡) includes two parts: the output 

power of the motor 𝑃𝑒𝑚 and the TEG 𝑃𝑇𝐸𝐺. 

𝑃𝑏(𝑡) = 𝑃𝑒𝑚(𝑇𝑒𝑚(𝑡), 𝜔𝑒𝑚(𝑡)) + 𝑃𝑇𝐸𝐺(𝑇𝑖𝑐(𝑡), 𝜔𝑖𝑐(𝑡))     (8) 

The ECMS regulates the torque distribution between the thermal and 

electrical paths with the torque split factor u (t), which is defined as  

𝑢(𝑡) =
𝑇𝑒𝑝𝑎𝑡ℎ(𝑡)

𝑇𝑤(𝑡)
    (9) 

When 𝑢(𝑡) = 0, it means that all the torque needed at the wheels is 

provided by the fuel path. When 𝑢(𝑡) = 1, it means all the torque 

needed at the wheel is provided by the electrical path or all the 

braking energy at the wheel is regenerated along the electrical path.  

The ECMS finds control variable u(t) by minimizing the cost 

function 𝐽(𝑡, 𝑢), which is defined as 

𝐽(𝑡, 𝑢) = ∆𝐸𝑓(𝑡, 𝑢) + 𝑠(𝑡)∆𝐸𝑒(𝑡, 𝑢)    (10) 

𝑠(𝑡) is the equivalence factor that is calculated online as a function of 

the current system status and some control parameters. The detail of 

calculation of 𝑠(𝑡) is presented in [14]. ∆𝐸𝑓(𝑡, 𝑢) and ∆𝐸𝑒(𝑡, 𝑢) are 

respectively the fuel energy and electrical energy used in interval ∆𝑡. 

Here ∆𝐸𝑒(𝑡, 𝑢) not only includes the energy consumed and generated 

by the electrical motor, but also includes the energy generated by the 

TEG. 

∆𝐸𝑓(𝑡, 𝑢) = ∫ 𝐻𝐿𝐻𝑉

𝑡+∆𝑡

𝑡

�̇�𝑓(𝜏, 𝑢)𝑑𝜏     (11) 

∆𝐸𝑒(𝑡, 𝑢) = ∫ 𝑃𝑒𝑚

𝑡+∆𝑡

𝑡

(𝜏, 𝑢)𝑑𝜏 + ∫ 𝑃𝑇𝐸𝐺

𝑡+∆𝑡

𝑡

(𝜏, 𝑢)𝑑𝜏     (12) 

𝐻𝐿𝐻𝑉 is the lower heating value of the fuel. 

Exhaust Model 

The function of the exhaust model is to calculate the exhaust flow 

rate and temperature. The exhaust flow rate �̇�𝑒𝑥ℎ can be estimated 

based on the fuel consumption �̇�𝑓(𝑡) and air-fuel ratio 𝜆, which can 

be expressed as 

�̇�𝑒𝑥ℎ(𝑡) = (1 + 𝜆)�̇�𝑓(𝑡)    (13) 

where air-fuel ratio 𝜆 = 14.7. 
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The power output of TEG is more sensitive to the exhaust 

temperature than the flow rate [18]. To capture the dynamic of 

exhaust temperature, the calculation of the exhaust temperature is 

based on the mean value engine model (MVEM) developed by 

Eriksson [19].  The core of the MVEM for exhaust temperature is to 

model the engine out temperature first and then model the 

temperature drop along the exhaust pipe.  

A linear model is used for the engine out temperature  𝑇𝑒𝑜𝑢𝑡 

𝑇𝑒𝑜𝑢𝑡 = 𝑇𝑐𝑦𝑙.0 + �̇�𝑒𝑥ℎ ∗ 𝐾     (14) 

where 𝑇𝑐𝑦𝑙.0 and 𝐾 are tuning constants.  

The temperature drop in the exhaust pipe  𝑇𝑒𝑥ℎ is expressed as： 

𝑇𝑒𝑥ℎ = 𝑇𝑤 + (𝑇𝑜𝑢𝑡 − 𝑇𝑤)𝑒
−

ℎ𝐴𝑝𝑖𝑝𝑒

�̇�𝑒𝑥ℎ𝑐𝑝ℎ    (15) 

𝑐𝑝ℎ is the specific heat at constant pressure of the exhaust gas. 𝐴𝑝𝑖𝑝𝑒 

is the pipe’s surface area. ℎ is the heat transfer coefficient. Here 𝑇𝑜𝑢𝑡 

can be the engine out temperature 𝑇𝑒𝑜𝑢𝑡 but also can be the gas out 

temperature from any pipe. 𝑇𝑤 is the pipe wall temperature, which is 

determined by the following equation:  

𝑑𝑇𝑤

𝑑𝑡
𝑚𝑤𝑐𝑤 = �̇�𝑖 − �̇�𝑒   (16) 

𝑐𝑤 is the heat capacity of the pipe wall material, and 𝑚𝑤 is the pipe 

wall mass. �̇�𝑖 and �̇�𝑒 are respectively the heat transfer from the 

interior and exterior. The detail of calculation for �̇�𝑖, �̇�𝑒 and ℎ are 

presented in [19].  

 

Figure 4. Structure of exhaust model 

The model structure of this exhaust model is presented in Figure 4. 

Since here the TEG is installed downstream of the catalytic converter, 

the exhaust temperature model can be divided into four sub-models 

(Appendix A):  

 Engine out temperature  𝑇𝑒𝑜𝑢𝑡 

 Temperature drop in the exhaust manifold 𝑇𝑒𝑥ℎ.𝑒𝑚 

 Temperature drop before the catalystic convertor 𝑇𝑒𝑥ℎ.𝑏𝑐  

 Temperature drop after catalystic convertor 𝑇𝑒𝑥ℎ.𝑎𝑐  

In the three temperature drop sub-models, they have different pipe 

dimensions 𝐴𝑝𝑖𝑝𝑒, heat transfer coefficient ℎ and pipe wall mass 𝑚𝑤. 

Since the exhaust manifold collects the exhaust gases from multiple 

cylinders into one pipe; the exhaust flow rate in sub-model of 

temperature drop in the exhaust manifold also need to be divided by 

the number of the cylinders 𝑛.  

TEG Model 

As can be seen in Figure 5, a complete TEG system consists of 

thermoelectric modules (TEMs), heat exchangers, a heat source, a 

heat sink and connecting wires. In this TEG model, the exhaust gas of 

an ICE serves as the heat source and the engine coolant serves as a 

heat sink.  

 
Figure 5. Structure of a TEG 

Here the TEG is a 0D black box model. The inputs are exhaust 

temperature 𝑇𝑒𝑥ℎ and flow rate �̇�𝑒𝑥ℎ, coolant temperature 𝑇𝑐𝑜𝑙 and 

flow rate �̇�𝑐𝑜𝑙. The output is maximum electrical power output 𝑃𝑇𝐸𝐺, 

achieved by matching the external load.  The purpose of the TEG 

model is to reduce the complexity of a potentially detailed TEG 

model and instead to gain a vehicle perspective. Thus, the model only 

captures the influence of main design parameters, such as the size of 

TEG 𝐴𝑇𝐸𝐺, the heat transfer coefficients of heat exchangers 𝑈ℎ and 

𝑈𝑐 and the thermoelectrical material Z𝑇𝑚. The influence of 

backpressure is not considered by this 0D TEG model. 

 
Figure 6. Heat flow across a TEG and TEG thermal resistance network 

Since the TEG is symmetrical with respect to its height, only half of 

the domain is simulated. In Figure 6, the exhaust flow absorbed by 

TEG is defined as 𝑄ℎ, which can be calculated as 

𝑄ℎ = 𝑐𝑝ℎ�̇�𝑒𝑥ℎ(𝑇𝑒𝑥ℎ − 𝑇𝑒𝑥ℎ.𝑜𝑢𝑡)    (17) 

𝑇𝑒𝑥ℎ.𝑜𝑢𝑡 is the gas-out temperature of TEG; the expression of Esarte 

et al [20] is used: 

𝑇𝑒𝑥ℎ.𝑜𝑢𝑡 = 𝑇𝑒𝑥ℎ − (𝑇𝑒𝑥ℎ − 𝑇𝑐𝑜𝑙)
1 − 𝑒−𝑁𝑇𝑈(1+𝐶𝑅)

1 + 𝐶𝑅
     (18) 

Where 

𝑁𝑇𝑈 =
1

𝑅𝑇𝐸𝐺�̇�𝑒𝑥ℎ𝑐𝑝ℎ
       (19) 

𝐶𝑅 =
�̇�𝑒𝑥ℎ𝑐𝑝ℎ

�̇�𝑐𝑜𝑙𝑐𝑝𝑐
     (20) 

�̇�𝑐𝑜𝑙 and 𝑐𝑝𝑐 are respectively the coolant mass flow rate and specific 

heat for coolant. 𝑅𝑇𝐸𝐺 is the total thermal resistance of the TEG. It 

can be seen that the heat transfer across the TEG 𝑄ℎ depends on the 

thermo-physical properties of the TEG and the hot and cold fluids. 

The coolant-out temperature can be expressed as  
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𝑇𝑐𝑜𝑙.𝑜𝑢𝑡 = 𝑇𝑐𝑜𝑙 + 𝐶𝑅(𝑇𝑒𝑥ℎ − 𝑇𝑐𝑜𝑙)
1 − 𝑒−𝑁𝑇𝑈(1+𝐶𝑅)

1 + 𝐶𝑅
     (21) 

The total thermal resistance of a TEG 𝑅𝑇𝐸𝐺 is made up of the thermal 

resistance of respectively hot side and cold side heat exchanger 

𝑅ℎ, 𝑅𝑐 and the total thermal resistance of the TEMs 𝑅𝑇𝐸𝑀𝑠.  

𝑅𝑇𝐸𝐺 = 𝑅ℎ + 𝑅𝑇𝐸𝑀𝑠 + 𝑅𝑐      (22) 

The thermal resistance of the heat exchangers can be calculated as 

follow:  

𝑅h =
1

𝑈ℎ𝐴𝑇𝐸𝐺
     (23) 

𝑅𝑐 =
1

𝑈𝑐𝐴𝑇𝐸𝐺
     (24) 

𝑈ℎ and 𝑈𝑐 are respectively the heat transfer coefficient of hot side 

and cold side heat exchangers. 𝐴𝑇𝐸𝐺 represents the heat transfer area 

of the heat exchanger.   

All the TEMs are connected thermally in parallel, thus the total 

thermal resistance of the TEMs 𝑅𝑇𝐸𝑀𝑠 is calculated as  

𝑅𝑇𝐸𝑀𝑠 =
𝑅𝑇𝐸𝑀

𝑛𝑇𝐸𝑀
     (25) 

Substituting Equation (1) into Equation (25), the total thermal 

resistance of the TEMs can be expressed as:  

𝑅𝑇𝐸𝑀𝑠 =
𝑅𝑇𝐸𝑀𝐴𝑇𝐸𝑀

2𝐹𝐴𝐻𝑋𝑅
   (26) 

For both simplicity and generality, the power output is calculated 

using respectively the energy absorbed by the TEG 𝑄ℎ and TEMs’ 

efficiency 𝜂𝑇𝐸𝑀𝑠 

𝑃𝑇𝐸𝐺 = 𝑄ℎ𝜂𝑇𝐸𝑀𝑠     (27) 

The idealized 𝜂𝑇𝐸𝑀𝑠 can be written as [16]: 

𝜂𝑇𝐸𝑀𝑠 = [
𝑚𝑍𝑇1

𝑍𝑇𝑚 + 𝑚𝑍𝑇1 + (𝑚 + 1)2] [
𝑇1 − 𝑇2

𝑇1
]     (28) 

where 𝑇1 and 𝑇2 are respectively the hot and cold side temperature of 

the TEMs. 𝑇𝑚 = (𝑇1 + 𝑇2)/2. 𝑚 =
𝑟𝐿

𝑟𝑖𝑛𝑡
, which is the ratio of load 

electrical resistance 𝑟𝐿 and internal electrical resistance 𝑟𝑖𝑛𝑡. 

A number of papers [16,21,22] have recently reported the maximum 

power output of TEG is achieved when  𝑚 is slightly greater than 1. 

When the thermal impedance matching is satisfied, m can be 

expressed as: 

𝑚 = √𝑍𝑇𝑚 + 1     (29) 

Substituting Equation (29) into Equation (28), the efficiency of TEMs 

at maximum power output 𝜂𝑇𝐸𝑀𝑠.𝑚𝑝 can be expressed as 

𝜂𝑇𝐸𝑀𝑠.𝑚𝑝 = [
√𝑍𝑇𝑚 + 1 − 1

√𝑍𝑇𝑚 + 1 +
𝑇2
𝑇1

] [
𝑇1 − 𝑇2

𝑇1
]     (30) 

The hot side and cold side temperature of TEMs can be expressed as 

follows [16]: 

𝑇1 = 𝑇ℎ −
𝑅ℎ

𝑅ℎ + 𝑅𝑐 + 𝑅𝑇𝐸𝑀𝑆

(𝑇ℎ − 𝑇𝑐)     (31) 

𝑇2 = 𝑇𝑐 +
𝑅𝑐

𝑅ℎ + 𝑅𝑐 + 𝑅𝑇𝐸𝑀𝑆

(𝑇ℎ − 𝑇𝐶)     (32) 

where 𝑇ℎ and 𝑇𝑐 are respectively the average temperature of the hot 

side and cold side heat exchanger.  

𝑇ℎ =
𝑇𝑒𝑥ℎ + 𝑇𝑒𝑥ℎ.𝑜𝑢𝑡

2
          (33) 

𝑇𝑐 =
𝑇𝑐𝑜𝑙 + 𝑇𝑐𝑜𝑙.𝑜𝑢𝑡

2
        (34) 

Model Validation  

Validation of the Exhaust Model 

The published dynamic exhaust data of BMW’s 3L-gasoline engine 

in the NEDC [10] are used to tune and validate the exhaust model. 

When using BMW’s published data, some assumptions are made. 

The mass flow rate data from BMW’s six-cylinder engine to Audi 

A6’s four-cylinder engine is simply extrapolated using a 

multiplication factor of 0.8. The multiplication factor for exhaust gas 

temperature is 0.92. The comparison of the extrapolated test data to 

the simulation results for the NEDC driving cycle is shown in Figure 

7. 

 
(a) Comparison of exhaust flow rate  
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(b) Comparison of exhaust temperature 

Figure 7. Simulation results of exhaust model and experiment data 

The simulation result of flow rate corresponds well with the test 

results, with a mean absolute error around 5%. For the exhaust 

temperature, errors at the beginning of the cycle can be explained by 

the unmodeled dynamics of heating and cooling effects and sensor 

dynamics. The variations in the temperature profile have a minor 

influence on the power output of the TEG [10]. Therefore, this 

exhaust model for this gasoline engine is validated and is used to 

provide inputs for the TEG model. 

Validation of the TEG Model 

The same apparatus as described in references [19, 23] is used for the 

TEG model validation. It can be seen in Figure 8 that a TEG with a 

plate-fin heat exchanger which contains four European 

Thermodynamics modules (GM250-127-28-10) is mounted in the 

EGR path of a CAT C6.6 ACERT diesel engine. All four TEMs are 

connected electrically in series. The cold side temperature of the TEG 

was maintained using chilled water from a laboratory recirculation 

chiller. 

 

Figure 8. TEG installed in the EGR path for engine test 

In order to control the hot side temperature of the modelled TEMs to 

within the limit of the module specifications, the authors elected to 

use a 30% torque NRTC (Non-Road Transient Cycle) on the C6.6 

engine. The chiller is set as a fixed temperature 20°C and its mass 

flow rate 0.1kg/s. The load electric resistance is set close to the 

modules’ resistances.  The comparison of the test data with the 

simulation results is presented in Figure 9. The simulation results 

correspond well with the measurement results.  Since the 𝑍𝑇𝑚 in the 

TEG model is set as constant in the model while in reality it is 

temperature-dependent, this results in an overestimation of power at 

low temperature and an underestimation at high temperature. 

However, the errors can be further diminished when accumulating the 

overall power output of TEG in a driving cycle. Thus, this 0D black 

box TEG model can provide a reasonable accuracy. 

 

Figure 9. Simulation results of TEG model and experimental data 

 

Validation of the ECMS  

Control parameters of the ECMS are selected based on the data listed 

in Table 1 and Table 2. The performance of the ECMS for this TEG 

hybrid vehicle in the NEDC cycle is validated throughout the range 

of torque distribution and battery state-of-charge(SOC), which are 

shown in Figure 10 and Figure 11. The ECMS distributes the torque 

between the engine and motor and maintains the balance of SOC with 

no SOC variations at the end of the NEDC cycle. 

  
Figure 10 ECMS torque distribution between the motor and engine 
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Figure 11 ECMS battery SOC 

Simulation Result  

In this section of the paper, the simulation results are presented. The 

power output of the TEG in NEDC is shown in Figure 12. During the 

urban section of the cycle the TEG power output averages 80W and 

increases to 200W over the extra-urban cycle. The peak power output 

reaches 450W in the extra-urban cycle. 

 
Figure 12 Power output of TEG in NEDC cycle 

The fuel economy and CO2 reduction due to the TEG in hybrid 

vehicle operation is compared with hybrid without TEG and the 

results shown in Table 3. In order to make them comparable, the 

ECMS constrains the initial and terminal SOC for both hybrid 

vehicles as 0.7 and no SOC variations at the end of the cycle. The 

fuel saving due to the TEG is 0.15L/100km (3.4%) and the CO2 

reduction is 3.4g/km (3.3%).  

Table 3. Fuel economy and CO2 reduction 

 
Hybrid 

vehicle 

Hybrid 

vehicle 

(TEG) 

Fuel saving 
CO2 

reduction 

Fuel consumption 

(L/100km) 
4.39 4.24 

0.15L/100km 

(3.4%) 

3.4g/km 

(3.3%) CO2 emission 

(g/km) 
103 99.6 

 

According to Roland Berger’s report [11], the annual driving distance 

for a passenger car is 11,600 km. The current gasoline price is 1.6 €/L.  

Based on these an annual fuel saving and CO2 reduction of this TEG 

hybrid vehicle are calculated in Table 4. It is assumed that the TEG 

life time is 15 years and 7% discount rate. The net present value 

(NPV) of the TEG’s life time fuel savings is calculated [12].  

𝑁. 𝑃. 𝑉 = ∑ 𝑃. 𝑉𝑚

𝑚=15

𝑚=1

     (35) 

𝑃. 𝑉𝑚 is the present value of saving of the nth year and it can be 

expressed as: 

𝑃. 𝑉𝑚 = 𝐹. 𝑉𝑚(1 + 𝑑)−𝑚      (36) 

𝐹. 𝑉𝑚 = 25.9€, which is the future fuel saving and here it is equal to 

the annual fuel saving. 𝑑 = 7%, which is the discount rate.  

Table 4. Annual fuel saving and CO2 reduction 

Annual fuel saving for TEG hybrid vehicle [L] 11600×
0.15

100
= 17.4 

Annual fuel saving for TEG hybrid vehicle [€] 17.4×1.6 = 27.8 

Annual CO2 reduction for TEG hybrid vehicle [g] 11600×3.4 = 39,440 

𝑁. 𝑃. 𝑉[€] ∑ 𝑃. 𝑉𝑚

𝑚=15

𝑚=1

= 253 

 

As can be seen in Table 4, for the customers, the average fuel saving 

is 27.8 € while the NPV of the fuel saving over the vehicle lifetime is 

253 €. For the original equipment manufacturer (OEM), the annual 

CO2 reduction is 39,4kg, which helps to reduce the CO2 emission 

target for the vehicle fleet. The economic benefit potential of TEG 

integrated with hybrid is large for both customers and OEMs.     

Sensitivity Analysis 

A sensitivity analysis is essential to identify which TEG design 

parameters have the greatest impact on the fuel saving. The core 

information of this sensitivity analysis is that the input variables are 

perturbed slightly, and the corresponding change in the outputs is 

reported as a percentage change in the outputs [24]. In a previous 

study [18], the sensitivity analysis of TEG is only on a standalone 

model. Here it is analysed from a vehicle system point of view. 

The process of sensitivity analysis is conducted as follows. The size 

of the heat exchanger and the size of TEM and its thermal resistance 

are fixed to form a baseline. The remaining parameters are selected as 

TEG. The TEG parameters given in Table 2 and fuel consumption of 

working at these parameters are used as the base values. One TEG 

variable is increased 20% around its base value, while all other 

variables are fixed at their respective base values. Then the fuel 

consumption is computed and recorded as the percentage changing 

above or below the base values C(%), which can be expressed as 

follow: 

C(%) =
�̇�𝑓.𝑐 − �̇�𝑓.𝑏

�̇�𝑓.𝑏
×100%   (37) 
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Where �̇�𝑓.𝑐  is fuel consumption of 20% increase in a variable and 

�̇�𝑓.𝑏 is the baseline fuel consumption. 

This process is repeated for every TEG variable. Each time, the 

ECMS algorithm ensures that there are no SOC variations. The 

sensitivity analysis results are presented in both Table 5 and Figure 

13. 

Table 5. Sensitivity analysis results on the fuel consumption 

Input Parameters 𝐶 (%)  

TEG’s weight 𝑀𝑇𝐸𝐺 
+0.0776 

Heat transfer coefficient of hot side heat exchanger 𝑈ℎ 
-0.0588 

Heat transfer coefficient of cold side heat exchanger 𝑈𝑐 
-0.0752 

Heat transfer area A 
-0.2869 

Figure of merit ZT 
-0.3245 

Fill factor of TEMs in heat exchanger F 
-0.2069 

Coolant mass flow rate  �̇�𝑐𝑜𝑙 
-0.0092 

Coolant temperature 𝑇𝑐𝑜𝑙 
+0.0095 

 

 

Figure 13 Sensitivity analysis results on the fuel consumption 

It can be seen that the fuel consumption is most sensitive to the 

thermoelectric material properties (Z𝑇𝑚 value). For the heat transfer 

coefficient (𝑈ℎ  and 𝑈𝑐), heat transfer area (𝐴𝑇𝐸𝐺) and added weight 

of TEG, they both influence the fuel saving at a moderate level. On 

the other hand, fill factor of TEMs in heat exchanger (F), coolant 

temperature (𝑇𝑐𝑜𝑙) and its flow rate   �̇�𝑐𝑜𝑙 only have a minor effect on 

the fuel saving. The negligible effect of the fill factor can be 

explained by the fact that the F is already close to its optimal value in 

current TEG systems. The sensitivity analysis results can be used as 

guidance for the further fabrication and optimization of the TEG. 

Conclusion  

A model of the TEG integrated with a parallel hybrid vehicle has 

been developed to investigate the potential of the TEG to reduce CO2 

emissions. The model has been validated against both experimental 

and published data. The simulation results show that for the NEDC 

cycle, a 3.4 % fuel saving with 80-200W energy recovered from the 

TEG. The annual CO2 reduction is 39,4 kg. The NPV of the TEG’s 

life time fuel saving is 253 €. Thus, if the cost of the TEG to the 

OEM is less than 200 € then the installation of a TEG represents a 

significant gain for the customers. 

A sensitivity analysis reveals the priority order of the parameters to 

achieve maximum fuel saving and offer guidance to the further 

fabrication and optimization of the TEG. When designing a TEG, the 

priority is to choose the material with the maximum Z𝑇𝑚 available in 

the desired temperature range. Then, there should be an optimisation 

of the design of the TEG structure with both large heat transfer area 

and heat transfer coefficient but still lightweight. After that, an 

optimisation of fill factor of TEMs in heat exchange is also necessary. 

Last in the priority order is maintaining the coolant temperature at 

low value and high flow rate. 
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Abbreviations 

DISI 

EGR                                                 

ECMS  

ICE    

OEM 

             Direct Injection Spark Ignition 

                Exhaust Gas Recirculation    

Equivalent Consumption Minimization Strategy 

Internal Combustion Engine 

Original Equipment Manufacturer 

NEDC                                    New European Driving Cycle 

NRTC                                      Non-Road Transient Cycle 

NPV                                             Net Present Value 

QSS                                          Quasi Static Simulation 

TCR                                      Thermochemical Recuperation   

TEM                                      Thermoelectric Module 

TEG                                      Thermoelectric Generator 

WHR 

 

Waste Heat Recovery  
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Appendix A  

 
Figure A. The overview of the TEG hybrid model 

 

 
Figure B. The overview of the Exhaust model 

 

 

Figure C. The overview of the TEG model 

 

 

 
 


