61,190 research outputs found

    Partitioning technique for a discrete quantum system

    Full text link
    We develop the partitioning technique for quantum discrete systems. The graph consists of several subgraphs: a central graph and several branch graphs, with each branch graph being rooted by an individual node on the central one. We show that the effective Hamiltonian on the central graph can be constructed by adding additional potentials on the branch-root nodes, which generates the same result as does the the original Hamiltonian on the entire graph. Exactly solvable models are presented to demonstrate the main points of this paper.Comment: 7 pages, 2 figure

    The Absence of Cold Dust and the Mineralogy and Origin of the Warm Dust Encircling BD +20 307

    Full text link
    Spitzer Space Telescope photometry and spectroscopy of BD +20 307 show that all of the dust around this remarkable Gyr-old spectroscopic binary arises within 1 AU. No additional cold dust is needed to fit the infrared excess. Peaks in the 10 and 20 micron spectrum are well fit with small silicates that should be removed on a timescale of years from the system. This is the dustiest star known for its age, which is >1 Gyr. The dust cannot arise from a steady-state collisional cascade. A catastrophic collision of two rocky, planetary-scale bodies in the terrestrial zone is the most likely source for this warm dust because it does not require a reservoir of planetesimals in the outer system.Comment: accepted to ApJ; 3 color figure

    Asperity contacts at the nanoscale: comparison of Ru and Au

    Full text link
    We develop and validate an interatomic potential for ruthenium based on the embedded atom method framework with the Finnis/Sinclair representation. We confirm that the new potential yields a stable hcp lattice with reasonable lattice and elastic constants and surface and stacking fault energies. We employ molecular dynamics simulations to bring two surfaces together; one flat and the other with a single asperity. We compare the process of asperity contact formation and breaking in Au and Ru, two materials currently in use in micro electro mechanical system switches. While Au is very ductile at 150 and 300 K, Ru shows considerably less plasticity at 300 and 600 K (approximately the same homologous temperature). In Au, the asperity necks down to a single atom thick bridge at separation. While similar necking occurs in Ru at 600 K, it is much more limited than in Au. On the other hand, at 300 K, Ru breaks by a much more brittle process of fracture/decohesion with limited plastic deformation.Comment: 10 pages, 13 figure

    A novel route to a finite center-of-mass momentum pairing state; current driven FFLO state

    Full text link
    The previously studied Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is stabilized by a magnetic field via the Zeeman coupling in spin-singlet superconductors. Here we suggest a novel route to achieve non-zero center-of-mass momentum pairing states in superconductors with Fermi surface nesting. We investigate two-dimensional superconductors under a uniform external current, which leads to a finite pair-momentum of qe{\bf q}_{e}. We find that an FFLO state with a spontaneous pair-momentum of qs{\bf q}_{s} is stabilized above a certain critical current which depends on the direction of the external current. A finite qs{\bf q}_s arises in order to make the total pair-momentum of qt(=qs+qe){\bf q}_t(={\bf q}_s + {\bf q}_e) perpendicular to the nesting vector, which lowers the free energy of the FFLO state, as compared to the superconducting and normal states. We also suggest experimental signatures of the FFLO state.Comment: 4 pages, 5 figure

    Shuttle-promoted nano-mechanical current switch

    Get PDF
    We investigate electron shuttling in three-terminal nanoelectromechanocal device built on a movable metallic rod oscillating between two drains. The device shows a double-well shaped electromechanical potential tunable by a source-drain bias voltage. Four stationary regimes controllable by the bias are found for this device: (i) single stable fixed point, (ii) two stable fixed points, (iii) two limiting cycles, and (iv) single limiting cycle. In the presence of perpendicular magnetic field the Lorentz force makes possible switching from one electromechanical state to another. The mechanism of tunable transitions between various stable regimes based on the interplay between voltage controlled electromechanical instability and magnetically controlled switching is suggested. The switching phenomenon is implemented for achieving both a reliable \emph{active} current switch and sensoring of small variations of magnetic field.Comment: 11 pages, 4 figure

    Bunching Transitions on Vicinal Surfaces and Quantum N-mers

    Full text link
    We study vicinal crystal surfaces with the terrace-step-kink model on a discrete lattice. Including both a short-ranged attractive interaction and a long-ranged repulsive interaction arising from elastic forces, we discover a series of phases in which steps coalesce into bunches of n steps each. The value of n varies with temperature and the ratio of short to long range interaction strengths. We propose that the bunch phases have been observed in very recent experiments on Si surfaces. Within the context of a mapping of the model to a system of bosons on a 1D lattice, the bunch phases appear as quantum n-mers.Comment: 5 pages, RevTex; to appear in Phys. Rev. Let
    corecore