886 research outputs found
Final state interactions in the decay
In this article, we study the final-state rescattering effects in the decay
, the numerical results indicate the corrections are
comparable with the contribution from the naive factorizable amplitude, and the
total amplitudes can accommodate the experimental data.Comment: 11 pages, 1 figure, revised version, to appear in EPJ
Unravelling the Interfacial Dynamics of Bandgap Funneling in Bismuth-Based Halide Perovskites
An environmentally friendly mixed-halide perovskite MA3Bi2Cl9âxIx with a bandgap funnel structure has been developed. However, the dynamic interfacial interactions of bandgap funneling in MA3Bi2Cl9âxIx perovskites in the photoelectrochemical (PEC) system remain ambiguous. In light of this, single- and mixed-halide lead-free bismuth-based hybrid perovskitesâMA3Bi2Cl9âyIy and MA3Bi2I9 (named MBCl-I and MBI)âin the presence and absence of the bandgap funnel structure, respectively, are prepared. Using temperature-dependent transient photoluminescence and electrochemical voltammetric techniques, the photophysical and (photo)electrochemical phenomena of solidâsolid and solidâliquid interfaces for MBCl-I and MBI halide perovskites are therefore confirmed. Concerning the mixed-halide hybrid perovskites MBCl-I with a bandgap funnel structure, stronger electronic coupling arising from an enhanced overlap of electronic wavefunctions results in more efficient exciton transport. Besides, MBCl-I's effective diffusion coefficient and electron-transfer rate demonstrate efficient heterogeneous charge transfer at the solidâliquid interface, generating improved photoelectrochemical hydrogen production. Consequently, this combination of photophysical and electrochemical techniques opens up an avenue to explore the intrinsic and interfacial properties of semiconductor materials for elucidating the correlation between material characterization and device performance
Characterization of a novel 4.0-kb y-type HMW-GS from Eremopyrum distans
A novel 4.0-kb Fy was sequenced and bacterially expressed. This gene, the largest y-type HMW-GS currently reported, is 4,032-bp long and encodes a mature protein with 1,321 amino acid (AA) residues. The 4.0-kb Fy shows novel modifications in all domains. In the N-terminal, it contains only 67 AA residues, as three short peptides are absent. In the repetitive domain, the undecapeptide RYYPSVTSPQQ is completely lost and the dodecapeptide GSYYPGQTSPQQ is partially absent. A novel motif unit, PGQQ, is present in addition to the two standard motif units PGQGQQ and GYYPTSPQQ. Besides, an extra cysteine residue also occurs in the middle of this domain. The large molecular mass of the 4.0-kb Fy is mainly due to the presence of an extra-long repetitive domain with 1,279 AA residues. The novel 4.0-kb Fy gene is of interest in HMW-GS gene evolution as well as to wheat quality improvement with regard to its longest repetitive domain length and extra cysteines residues
Nonfactorizable contributions in B decays to charmonium: the case of
Nonleptonic to charmonium decays generally show deviations from the
factorization predictions. For example, the mode has
been experimentally observed with sizeable branching fraction while its
factorized amplitude vanishes. We investigate the role of rescattering effects
mediated by intermediate charmed meson production in this class of decay modes,
and consider with the meson.
Using an effective lagrangian describing interactions of pairs of heavy-light
mesons with a quarkonium state, we relate this mode to the
analogous mode with in the final state. We find large enough to be measured at the factories, so that this decay
mode could be used to study the poorly known .Comment: RevTex, 16 pages, 2 eps figure
Branching ratios of decays in perturbative QCD approach
We study the rare decays , which can occur only via
annihilation type diagrams in the standard model. We calculate all of the four
modes, , in the framework of perturbative QCD approach
and give the branching ratios of the order about .Comment: 18 pages, 1 figure, Revte
The Proton Spin and Flavor Structure in the Chiral Quark Model
After a pedagogical review of the simple constituent quark model and deep
inelastic sum rules, we describe how a quark sea as produced by the emission of
internal Goldstone bosons by the valence quarks can account for the observed
features of proton spin and flavor structures. Some issues concerning the
strange quark content of the nucleon are also discussed.Comment: 59 pages with table of contents, Lecture delivered at the Schladming
Winter School (March 1997), to be published by Springer-Verlag under the
title "Computing Particle Properties" (eds. C. B. Lang and H. Gausterer
Structural and doping effects in the half-metallic double perovskite CrWO
he structural, transport, magnetic and optical properties of the double
perovskite CrWO with have been studied. By
varying the alkaline earth ion on the site, the influence of steric effects
on the Curie temperature and the saturation magnetization has been
determined. A maximum K was found for SrCrWO having an almost
undistorted perovskite structure with a tolerance factor . For
CaCrWO and BaCrWO structural changes result in a strong
reduction of . Our study strongly suggests that for the double perovskites
in general an optimum is achieved only for , that is, for an
undistorted perovskite structure. Electron doping in SrCrWO by a
partial substitution of Sr by La was found to reduce both
and the saturation magnetization . The reduction of could be
attributed both to band structure effects and the Cr/W antisites induced by
doping. Band structure calculations for SrCrWO predict an energy gap in
the spin-up band, but a finite density of states for the spin-down band. The
predictions of the band structure calculation are consistent with our optical
measurements. Our experimental results support the presence of a kinetic energy
driven mechanism in CrWO, where ferromagnetism is stabilized by a
hybridization of states of the nonmagnetic W-site positioned in between the
high spin Cr-sites.Comment: 14 pages, 10 figure
Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method
The velocity auto-correlation spectra of simple liquids obtained by the NMR
method of modulated gradient spin echo show features in the low frequency range
up to a few kHz, which can be explained reasonably well by a long
time tail decay only for non-polar liquid toluene, while the spectra of polar
liquids, such as ethanol, water and glycerol, are more congruent with the model
of diffusion of particles temporarily trapped in potential wells created by
their neighbors. As the method provides the spectrum averaged over ensemble of
particle trajectories, the initial non-exponential decay of spin echoes is
attributed to a spatial heterogeneity of molecular motion in a bulk of liquid,
reflected in distribution of the echo decays for short trajectories. While at
longer time intervals, and thus with longer trajectories, heterogeneity is
averaged out, giving rise to a spectrum which is explained as a combination of
molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic
fluctuations.Comment: 8 pages, 6 figur
Tracking echovirus eleven outbreaks in Guangdong, China
In April 2019, a suspect cluster of enterovirus cases was reported in a neonatology department in Guangdong, China, resulting in five deaths. We aimed to investigate the pathogen profiles in fatal cases, the circulation and transmission pattern of
the viruses by combining metatranscriptomic, phylogenetic, and epidemiological analyses. Metatranscriptomic sequencing
was used to characterize the enteroviruses. Clinical and environmental surveillance in the local population was performed
to understand the prevalence and genetic diversity of the viruses in the local population. The possible source(s), evolution,
transmission, and recombination of the viruses were investigated by incorporating genomes from the current outbreak,
from local retrospective surveillance, and from public databases. Metatranscriptomic analysis identified Echovirus 11 (E11)
in three fatal cases. Seroprevalence of neutralization antibody to E11 was 35 to 44 per cent in 3â15 age groups of general population, and the viruses were associated with various clinical symptoms. From the viral phylogeny, nosocomial transmissions were identified and all E11 2019 outbreak strains were closely related with E11 strains circulating in local population 2017â19. Frequent recombination occurred among the 2019 Guangdong E11 outbreak strains and various genotypes in enterovirus B species. This study provides an example of combining advanced genetic technology and epidemiological surveillance in pathogen diagnosis, source(s), and transmission tracing during an infectious disease outbreak. The result highlights the hidden E11 circulation and the risk of viral transmission and infection in the young age population in China.
Frequent recombination between Guangdong-like strains and other enterovirus genotypes also implies the prevalence of
these emerging E11 strains
- âŠ