62,239 research outputs found
Low-frequency method for magnetothermopower and Nernst effect measurements on single crystal samples at low temperatures and high magnetic fields
We describe an AC method for the measurement of the longitudinal (Sxx) and
transverse (Sxy, i.e. Nernst) thermopower of mm-size single crystal samples at
low temperatures (T30 T). A low-frequency (33
mHz) heating method is used to increase the resolution, and to determine the
temperature gradient reliably in high magnetic fields. Samples are mounted
between two thermal blocks which are heated by a sinusoidal frequency f0 with a
p/2 phase difference. The phase difference between two heater currents gives a
temperature gradient at 2f0. The corresponding thermopower and Nernst effect
signals are extracted by using a digital signal processing method due. An
important component of the method involves a superconducting link, YBa2Cu3O7+d
(YBCO), which is mounted in parallel with sample to remove the background
magnetothermopower of the lead wires. The method is demonstrated for the quasi
two-dimensional organic conductor a-(BEDT-TTF)2KHg(SCN)4, which exhibits a
complex, magnetic field dependent ground state above 22.5 T at low
temperatures.Comment: 11 pages, 6 figures, 15 reference
Intrinsic Charm Flavor and Helicity Content in the Proton
Contributions to the quark flavor and spin observables from the intrinsic
charm in the proton are discussed in the SU(4) quark meson fluctuation model.
Our results suggest that the probability of finding the intrinsic charm in the
proton is less than 1%. The intrinsic charm helicity is small and negative,
. The fraction of the total quark helicity
carried by the intrinsic charm is less than 2%, and c_\up/c_\dw=35/67.Comment: 4 pages, 2 tables (revised version
Local structure of directed networks
Previous work on undirected small-world networks established the paradigm
that locally structured networks tend to have high density of short loops. On
the other hand, many realistic networks are directed. Here we investigate the
local organization of directed networks and find, surprisingly, that real
networks often have very few short loops as compared to random models. We
develop a theory and derive conditions for determining if a given network has
more or less loops than its randomized counterpart. These findings carry broad
implications for structural and dynamical processes sustained by directed
networks
Consistency test of general relativity from large scale structure of the Universe
We construct a consistency test of General Relativity (GR) on cosmological
scales. This test enables us to distinguish between the two alternatives to
explain the late-time accelerated expansion of the universe, that is, dark
energy models based on GR and modified gravity models without dark energy. We
derive the consistency relation in GR which is written only in terms of
observables - the Hubble parameter, the density perturbations, the peculiar
velocities and the lensing potential. The breakdown of this consistency
relation implies that the Newton constant which governs large-scale structure
is different from that in the background cosmology, which is a typical feature
in modified gravity models. We propose a method to perform this test by
reconstructing the weak lensing spectrum from measured density perturbations
and peculiar velocities. This reconstruction relies on Poisson's equation in GR
to convert the density perturbations to the lensing potential. Hence any
inconsistency between the reconstructed lensing spectrum and the measured
lensing spectrum indicates the failure of GR on cosmological scales. The
difficulties in performing this test using actual observations are discussed.Comment: 7 pages, 1 figur
THEORETICAL STUDIES OF BILIPROTEIN CHROMOPHORES AND RELATED BILE PIGMENTS BY MOLECULAR ORBITAL AND RAMACHANDRAN TYPE CALCULATIONS
Ramachandran calculations have been used to gain insight into steric hindrance in bile
pigments related to biliprotein chromophores. The high optical activity of denatured phycocyanin, as
compared to phycoerythrin, has been related to the asymmetric substitution at ring A, which shifts the
equilibrium towards the P-helical form of the chromophore. Geometric effects on the electronic structures
and transitions have then been studied by molecular orbital calculations for several conjugation
systems including the chromophores of phycocyanin. phytochrome P,, cations, cation radicals and
tautomeric forms. For these different chromophores some general trends can be deduced. For instance,
for a given change in the gross shape (e.g. either unfolding of the molecule from a cyclic-helical to a fully
extended geometry, or upon out-of-plane twists of the pyrrole ring A) of the molecules under study, the
predicted absorption spectra all change in a simikar way. Nonetheless, there are characteristic distinctions
between the different n-systems, both in the transition energies and the charge distribution, which
can be related to their known differences in spectroscopic properties and their reactivity
Bunching Transitions on Vicinal Surfaces and Quantum N-mers
We study vicinal crystal surfaces with the terrace-step-kink model on a
discrete lattice. Including both a short-ranged attractive interaction and a
long-ranged repulsive interaction arising from elastic forces, we discover a
series of phases in which steps coalesce into bunches of n steps each. The
value of n varies with temperature and the ratio of short to long range
interaction strengths. We propose that the bunch phases have been observed in
very recent experiments on Si surfaces. Within the context of a mapping of the
model to a system of bosons on a 1D lattice, the bunch phases appear as quantum
n-mers.Comment: 5 pages, RevTex; to appear in Phys. Rev. Let
MEDUSA - New Model of Internet Topology Using k-shell Decomposition
The k-shell decomposition of a random graph provides a different and more
insightful separation of the roles of the different nodes in such a graph than
does the usual analysis in terms of node degrees. We develop this approach in
order to analyze the Internet's structure at a coarse level, that of the
"Autonomous Systems" or ASes, the subnetworks out of which the Internet is
assembled. We employ new data from DIMES (see http://www.netdimes.org), a
distributed agent-based mapping effort which at present has attracted over 3800
volunteers running more than 7300 DIMES clients in over 85 countries. We
combine this data with the AS graph information available from the RouteViews
project at Univ. Oregon, and have obtained an Internet map with far more detail
than any previous effort.
The data suggests a new picture of the AS-graph structure, which
distinguishes a relatively large, redundantly connected core of nearly 100 ASes
and two components that flow data in and out from this core. One component is
fractally interconnected through peer links; the second makes direct
connections to the core only. The model which results has superficial
similarities with and important differences from the "Jellyfish" structure
proposed by Tauro et al., so we call it a "Medusa." We plan to use this picture
as a framework for measuring and extrapolating changes in the Internet's
physical structure. Our k-shell analysis may also be relevant for estimating
the function of nodes in the "scale-free" graphs extracted from other
naturally-occurring processes.Comment: 24 pages, 17 figure
A note on positive energy of topologically massive gravity
I review how "classical SUGRA" embeddability establishes positive energy E
for D=3 topologically massive gravity (TMG), with or without a cosmological
term, a procedure familiar from D=4 Einstein gravity (GR). It also provides
explicit expressions for E. In contrast to GR, E is not manifestly positive,
due to the peculiar two-term nature of TMG.Comment: 7 page
Multivalued memory effects in electronic phase-change manganites controlled by Joule heating
Non-volatile multivalued memory effects caused by magnetic fields, currents,
and voltage pulses are studied in Nd_{0.65}Ca_{0.35}MnO_3 and
(Nd_{1-y}Sm_{y})_{0.5}Sr_{0.5}MnO_3 (y=0.75) single crystals in the hysteretic
region between ferromagnetic metallic and charge-ordered insulating states. The
current/voltage effects observed in this study are explained by the
self-heating effect, which enable us to control the colossal electroresistance
effects. This thermal-cycle induced switching between electronic solid and
liquid states can be regarded as electronic version of atomic crystal/amorphous
transitions in phase-change chalcogenides.Comment: 5 pages, 4 figures. to appear in Phys. Rev.
Optimizing egalitarian performance in the side-effects model of colocation for data center resource management
In data centers, up to dozens of tasks are colocated on a single physical
machine. Machines are used more efficiently, but tasks' performance
deteriorates, as colocated tasks compete for shared resources. As tasks are
heterogeneous, the resulting performance dependencies are complex. In our
previous work [18] we proposed a new combinatorial optimization model that uses
two parameters of a task - its size and its type - to characterize how a task
influences the performance of other tasks allocated to the same machine.
In this paper, we study the egalitarian optimization goal: maximizing the
worst-off performance. This problem generalizes the classic makespan
minimization on multiple processors (P||Cmax). We prove that
polynomially-solvable variants of multiprocessor scheduling are NP-hard and
hard to approximate when the number of types is not constant. For a constant
number of types, we propose a PTAS, a fast approximation algorithm, and a
series of heuristics. We simulate the algorithms on instances derived from a
trace of one of Google clusters. Algorithms aware of jobs' types lead to better
performance compared with algorithms solving P||Cmax.
The notion of type enables us to model degeneration of performance caused by
using standard combinatorial optimization methods. Types add a layer of
additional complexity. However, our results - approximation algorithms and good
average-case performance - show that types can be handled efficiently.Comment: Author's version of a paper published in Euro-Par 2017 Proceedings,
extends the published paper with addtional results and proof
- …