580 research outputs found
A SCR Model based on Reactor and Engine Experimental Studies for a Cu-zeolite Catalyst
A NOx reduction efficiency higher than 95% with NH3 slip less than 30 ppm is desirable for heavy-duty diesel (HDD) engines using selective catalytic reduction (SCR) systems to meet the US EPA 2010 NOx standard and the 2014-2018 fuel consumption regulation. The SCR performance needs to be improved through experimental and modeling studies. In this research, a high fidelity global kinetic 1-dimensional 2-site SCR model with mass transfer, heat transfer and global reaction mechanisms was developed for a Cu-zeolite catalyst. The model simulates the SCR performance for the engine exhaust conditions with NH3 maldistribution and aging effects, and the details are presented.
SCR experimental data were collected for the model development, calibration and validation from a reactor at Oak Ridge National Laboratory (ORNL) and an engine experimental setup at Michigan Technological University (MTU) with a Cummins 2010 ISB engine. The model was calibrated separately to the reactor and engine data. The experimental setup, test procedures including a surrogate HD-FTP cycle developed for transient studies and the model calibration process are described. Differences in the model parameters were determined between the calibrations developed from the reactor and the engine data. It was determined that the SCR inlet NH3 maldistribution is one of the reasons causing the differences. The model calibrated to the engine data served as a basis for developing a reduced order SCR estimator model.
The effect of the SCR inlet NO2/NOx ratio on the SCR performance was studied through simulations using the surrogate HD-FTP cycle. The cumulative outlet NOx and the overall NOx conversion efficiency of the cycle are highest with a NO2/NOx ratio of 0.5. The outlet NH3 is lowest for the NO2/NOx ratio greater than 0.6.
A combined engine experimental and simulation study was performed to quantify the NH3 maldistribution at the SCR inlet and its effects on the SCR performance and kinetics. The uniformity index (UI) of the SCR inlet NH3 and NH3/NOx ratio (ANR) was determined to be below 0.8 for the production system. The UI was improved to 0.9 after installation of a swirl mixer into the SCR inlet cone. A multi-channel model was developed to simulate the maldistribution effects. The results showed that reducing the UI of the inlet ANR from 1.0 to 0.7 caused a 5-10% decrease in NOx reduction efficiency and 10-20 ppm increase in the NH3 slip. The simulations of the steady-state engine data with the multi-channel model showed that the NH3 maldistribution is a factor causing the differences in the calibrations developed from the engine and the reactor data.
The Reactor experiments were performed at ORNL using a Spaci-IR technique to study the thermal aging effects. The test results showed that the thermal aging (at 800°C for 16 hours) caused a 30% reduction in the NH3 stored on the catalyst under NH3 saturation conditions and different axial concentration profiles under SCR reaction conditions. The kinetics analysis showed that the thermal aging caused a reduction in total NH3 storage capacity (94.6 compared to 138 gmol/m3), different NH3 adsorption/desorption properties and a decrease in activation energy and the pre-exponential factor for NH3 oxidation, standard and fast SCR reactions. Both reduction in the storage capability and the change in kinetics of the major reactions contributed to the change in the axial storage and concentration profiles observed from the experiments
Characterization of a novel non-specific nuclease from thermophilic bacteriophage GBSV1
BACKGROUND: Thermostable enzymes from thermophiles have attracted extensive studies. In this investigation, a nuclease-encoding gene (designated as GBSV1-NSN) was obtained from a thermophilic bacteriophage GBSV1 for the first time. RESULTS: After recombinant expression in Escherichia coli, the purified GBSV1-NSN exhibited non-specific nuclease activity, being able to degrade various nucleic acids, including RNA, single-stranded DNA and double-stranded DNA that was circular or linear. Based on sequence analysis, the nuclease shared no homology with any known nucleases, suggesting that it was a novel nuclease. The characterization of the recombinant GBSV1-NSN showed that its optimal temperature and pH were 60°C and 7.5, respectively. The results indicated that the enzymatic activity was inhibited by enzyme inhibitors or detergents, such as ethylene diamine tetraacetic acid, citrate, dithiothreitol, β-mercaptoethanol, guanidine hydrochloride, urea and SDS. In contrast, the nuclease activity was enhanced by TritonX-100, Tween-20 or chaps to approximately 124.5% – 141.6%. The K(m )of GBSV1-NSN nuclease was 231, 61 and 92 μM, while its k(cat )was 1278, 241 and 300 s(-1 )for the cleavage of dsDNA, ssDNA and RNA, respectively. CONCLUSION: Our study, therefore, presented a novel thermostable non-specific nuclease from thermophilic bacteriophage and its overexpression and purification for scientific research and applications
Proprioceptive Learning with Soft Polyhedral Networks
Proprioception is the "sixth sense" that detects limb postures with motor
neurons. It requires a natural integration between the musculoskeletal systems
and sensory receptors, which is challenging among modern robots that aim for
lightweight, adaptive, and sensitive designs at a low cost. Here, we present
the Soft Polyhedral Network with an embedded vision for physical interactions,
capable of adaptive kinesthesia and viscoelastic proprioception by learning
kinetic features. This design enables passive adaptations to omni-directional
interactions, visually captured by a miniature high-speed motion tracking
system embedded inside for proprioceptive learning. The results show that the
soft network can infer real-time 6D forces and torques with accuracies of
0.25/0.24/0.35 N and 0.025/0.034/0.006 Nm in dynamic interactions. We also
incorporate viscoelasticity in proprioception during static adaptation by
adding a creep and relaxation modifier to refine the predicted results. The
proposed soft network combines simplicity in design, omni-adaptation, and
proprioceptive sensing with high accuracy, making it a versatile solution for
robotics at a low cost with more than 1 million use cycles for tasks such as
sensitive and competitive grasping, and touch-based geometry reconstruction.
This study offers new insights into vision-based proprioception for soft robots
in adaptive grasping, soft manipulation, and human-robot interaction.Comment: 20 pages, 10 figures, 2 tables, submitted to the International
Journal of Robotics Research for revie
Studies on the effect of Celastrus orbiculatus (Celastraceae) extract on chemosensitivity of liver cancer cells via Wnt/β-catenin pathway
Purpose: To examine the efficacy of Celastrus orbiculatus extract (COE) on the chemosensitivity of liver cancer (LC) cells and its mechanism of action.Methods: Hep G2/ADM cells in the logarithmic growth phase were assigned to a control group (no treatment for cell culture medium only) and a study group (120 μg/ml COE added to the culture medium). After 48 h of incubation, the biological responses were compared. The study group wasdivided into groups A and B, while control group was divided into groups C and D, with 1 μmol/L XAV939 added in groups A and C. Cell proliferation, cell invasion, cell apoptosis rate, and apoptosis protein in the four groups were evaluated.Results: The study group showed significantly lower values in terms of cell proliferation and cell invasiveness (p < 0.05) and a higher apoptotic rate than the control group (p < 0.05)). The study group also demonstrated an elevated pro-apoptotic protein Bax level and a declined anti-apoptotic protein Bcl-2 level. In contrast to group B, the proliferation and invasiveness of Hep G2/ADM cells in group A treated with the inhibitor, XAV939, were significantly lower (p < 0.05), while the apoptotic rate exhibited a significant increase (p < 0.05). There was a rise in the level of pro-apoptotic protein, Bax, and a fall in the anti-apoptotic protein Bcl-2 level in group A. Lower levels of β-catenin, c-Myc, and cyclin D1 protein were observed in the study group compared with the control group (p < 0.05). Compared with other groups, the multiplication capacity and invasiveness of cells in group A treated with COE and inhibitor XAV939 significantly declined, while the apoptotic rate increased (p < 0.05).Conclusion: COE reverses drug resistance in chemotherapy by inhibiting the expression of Wnt/β-catenin pathway in LC cells. Therefore, COE has potentials for use along with chemotherapeutic agents in the management of liver cancer
Numerical simulation of pore-scale flow in chemical flooding process
AbstractChemical flooding is one of the effective technologies to increase oil recovery of petroleum reservoirs after water flooding. Above the scale of representative elementary volume (REV), phenomenological modeling and numerical simulations of chemical flooding have been reported in literatures, but the studies alike are rarely conducted at the pore-scale, at which the effects of physicochemical hydrodynamics are hardly resolved either by experimental observations or by traditional continuum-based simulations. In this paper, dissipative particle dynamics (DPD), one of mesoscopic fluid particle methods, is introduced to simulate the pore-scale flow in chemical flooding processes. The theoretical background, mathematical formulation and numerical approach of DPD are presented. The plane Poiseuille flow is used to illustrate the accuracy of the DPD simulation, and then the processes of polymer flooding through an oil-wet throat and a water-wet throat are studies, respectively. The selected parameters of those simulations are given in details. These preliminary results show the potential of this novel method for modeling the physicochemical hydrodynamics at the pore scale in the area of chemical enhanced oil recovery
Effects of Temperature on Corrosion Behavior of Reinforcements in Simulated Sea-Sand Concrete Pore Solution
The effects of temperature on the chloride-induced corrosion behavior of reinforcing steel in simulated sea-sand concrete pore solution are studied by means of linear polarization resistance. The results show that the Ecorr (corrosion potential) and icorr (corrosion current density) of the reinforcing steels are temperature and/or chloride concentration (CCl )-related parameters. A linear correlation between Ecorr and temperature and a natural logarithmic correlation between icorr and CCl are observed. It is proved that the relationship between the corrosion rate and temperature follows the Arrhenius equation, whereas the activation energy of corrosion reaction increases with the increase of CCl
- …