69 research outputs found

    Numerically stable neural network for simulating Kardar-Paris-Zhang growth in the presence of uncorrelated and correlated noises

    Full text link
    Numerical simulations are essential tools for exploring the dynamic scaling properties of the nonlinear Kadar-Paris-Zhang (KPZ) equation. Yet the inherent nonlinearity frequently causes numerical divergence within the strong-coupling regime using conventional simulation methods. To sustain the numerical stability, previous works either utilized discrete growth models belonging to the KPZ universality class or modified the original nonlinear term by the designed specified operators. However, recent studies revealed that these strategies could cause abnormal results. Motivated by the above-mentioned facts, we propose a convolutional neural network-based method to simulate the KPZ equation driven by uncorrelated and correlated noises, aiming to overcome the challenge of numerical divergence, and obtaining reliable scaling exponents. We first train the neural network to represent the determinant terms of the KPZ equation in a data-driven manner. Then, we perform simulations for the KPZ equation with various types of temporally and spatially correlated noises. The experimental results demonstrate that our neural network could effectively estimate the scaling exponents eliminating numerical divergence

    Crop Height and Plot Estimation for Phenotyping from Unmanned Aerial Vehicles using 3D LiDAR

    Full text link
    We present techniques to measure crop heights using a 3D Light Detection and Ranging (LiDAR) sensor mounted on an Unmanned Aerial Vehicle (UAV). Knowing the height of plants is crucial to monitor their overall health and growth cycles, especially for high-throughput plant phenotyping. We present a methodology for extracting plant heights from 3D LiDAR point clouds, specifically focusing on plot-based phenotyping environments. We also present a toolchain that can be used to create phenotyping farms for use in Gazebo simulations. The tool creates a randomized farm with realistic 3D plant and terrain models. We conducted a series of simulations and hardware experiments in controlled and natural settings. Our algorithm was able to estimate the plant heights in a field with 112 plots with a root mean square error (RMSE) of 6.1 cm. This is the first such dataset for 3D LiDAR from an airborne robot over a wheat field. The developed simulation toolchain, algorithmic implementation, and datasets can be found on the GitHub repository located at https://github.com/hsd1121/PointCloudProcessing.Comment: 8 pages, 10 figures, 1 table, Accepted to IROS 202

    Blind image quality assessment for authentic distortions by intermediary enhancement and iterative training

    Get PDF
    With the boom of deep neural networks, blind image quality assessment (BIQA) has achieved great processes. However, the current BIQA metrics are limited when evaluating low-quality images as compared to medium-quality and high-quality images, which restricts their applications in real world problems. In this paper, we first identify that two challenges caused by distribution shift and long-tailed distribution lead to the compromised performance on low-quality images. Then, we propose an intermediary enhancement-based bilateral network with iterative training strategy for solving these two challenges. Drawing on the experience of transitive transfer learning, the proposed metric adaptively introduces enhanced intermediary images to transfer more information to low-quality images for mitigating the distribution shift. Our metric also adopts an iterative training strategy to deal with the long-tailed distribution. This strategy decouples feature extraction and score regression for better representation learning and regressor training. It not only transfers the knowledge learned from the earlier stage to the latter stage, but also makes the model pay more attention to long-tailed low-quality images. We conduct extensive experiments on five authentically distorted image quality datasets. The results show that our metric significantly improves the evaluating performance on low-quality images and delivers state-of-the-art intra-dataset results. During generalization tests, our metric also achieves the best cross-dataset performanc

    Finding Optimal Team for Multiskill Task Based on Vehicle Sensors Data

    No full text
    These days, with the increasingly widespread employment of sensors, particularly those attached to vehicles, the collection of spatial data is becoming easier and more accurate. As a result, many relevant areas, such as spatial crowdsourcing, are gaining ever more attention. A typical spatial crowdsourcing scenario involves an employer publishing a task and some workers helping to accomplish it. However, most of previous studies have only considered the spatial information of workers and tasks, while ignoring individual variations among workers. In this paper, we consider the Software Development Team Formation (SDTF) problem, which aims to assemble a team of workers whose abilities satisfy the requirements of the task. After showing that the problem is NP-hard, we propose three greedy algorithms and a multiple-phase algorithm to approximately solve the problem. Extensive experiments are conducted on synthetic and real datasets, and the results verify the effectiveness and efficiency of our algorithms

    Purification and Characterization of Chitinases from Ridgetail White Prawn Exopalaemon carinicauda

    No full text
    In this paper, we purified two native chitinases from the hepatopancreas of the ridgetail white prawn Exopalaemon carinicauda by using ion-exchange resin chromatography (IEC) and gel filtration. These two chitinases, named EcChi1 and EcChi2, were identified by chitinolytic activity assay and LC-ESI-MS/MS. Their apparent molecular weights were 44 kDa and 65 kDa as determined by sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The specific activity of EcChi1 and EcChi2 was 1305.97 U·mg−1 and 28.69 U·mg−1. The optimal temperature and pH of EcChi1 were 37 °C and pH 4.0, respectively. Co2+, Fe3+, Zn2+, Cd2+, and Cu2+ had an obvious promoting effect upon chitinase activity of EcChi1. For colloidal chitin, the Km and Vmax values of EcChi1 were 2.09 mg·mL−1 and 31.15 U·mL−1·h−1

    Optimal Parking Slots Reservation and Allocation Problem for Periodic Parking Platforms with Preference Constraints

    No full text
    Various solutions, such as parking reservation systems, have been proposed to alleviate the difficulty in finding parking slots. In such systems, parking requests are submitted in advance by drivers, and the systems will reserve appropriate parking spots for drivers if their requests are accepted. However, the parking slots may be allocated unreasonably, which may lead to a waste of space and time resources. In addition, there is a game relationship between operator’s profit (OP) and users’ benefits (UB), which may affect the sustainable development of the system, if balanced improperly. Given the drivers’ arrival and departure time and their parking preference, the paper proposes a periodic reservation and allocation mode (PRAM) and establishes a dual-objective binary integer linear model to solve the reservation and allocation problem. The model aims to maximize the comprehensive benefits of the operator and users and to take full advantage of parking resources. We proposed a TOPSIS-SA algorithm (Technique for Order Preference by Similarity to an Ideal Solution and Simulated Annealing algorithm) to solve our model. Numerical experiments show that our model performs better than the baseline models on all performance metrics such as total operating profit, users’ average walking distance, acceptance rate, and utilization of parking slots
    • …
    corecore