
Research Article
Finding Optimal Team for Multiskill Task Based on
Vehicle Sensors Data

Bowen Du, Qian Tao, Feng Zhu, and Tianshu Song

State Key Laboratory of Software Development Environment, School of Computer Science and Engineering and IRI,
Beihang University, Beijing, China

Correspondence should be addressed to Qian Tao; qiantao@buaa.edu.cn

Received 28 July 2017; Accepted 12 September 2017; Published 31 October 2017

Academic Editor: Jia Hu

Copyright © 2017 Bowen Du et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

These days, with the increasingly widespread employment of sensors, particularly those attached to vehicles, the collection of spatial
data is becoming easier and more accurate. As a result, many relevant areas, such as spatial crowdsourcing, are gaining ever more
attention. A typical spatial crowdsourcing scenario involves an employer publishing a task and some workers helping to accomplish
it. However, most of previous studies have only considered the spatial information of workers and tasks, while ignoring individual
variations among workers. In this paper, we consider the Software Development Team Formation (SDTF) problem, which aims
to assemble a team of workers whose abilities satisfy the requirements of the task. After showing that the problem is NP-hard, we
propose three greedy algorithms and a multiple-phase algorithm to approximately solve the problem. Extensive experiments are
conducted on synthetic and real datasets, and the results verify the effectiveness and efficiency of our algorithms.

1. Introduction

These days, with the development of sensors (especially
vehicle sensors and mobile sensors) [1–3], it is increasingly
simple to acquire spatial and temporal information [4, 5].

Many studies based on vehicle sensors data have been
conducted in recent years [6–8]. As a result, many applica-
tions now provide services based on users’ real-time spatial
information and these are becoming ever popular. Among
these applications, some focus on crowdsourcing services that
use spatial information. These applications usually require
some workers to help an employer to accomplish a task.
For example, Uber (https://www.uber.com) organizes drivers
and provides users with a convenient taxi service, whereas
+Meituan (http://www.meituan.com) provides a credible and
fast food-delivery service. This area, called spatial crowd-
sourcing, is attracting significant attention.

The task assignment problem is one of the fundamental
concerns in spatial crowdsourcing. For example, real-time
taxi-calling platforms, such as Uber and Didi Chuxing [9],
always need to assign each taxi-calling task to a suitable taxi
(i.e., a crowd worker). An incorrect assignment may cause
taxis to be dispatched to far-away places, which results in

a slow response time and the loss of the platform. Many
studies on the task assignment problem have been published
in recent years [10–12]. However, most of them only consider
the spatial information of tasks and workers, while ignoring
the individual variations among workers. Namely, different
people may excel or struggle with different tasks, and tasks
also contain certain requirements for which some workers
may be inadequate.

Take Figure 1 as an example. Suppose a website develop-
ment task requires coders skilled in .NET, SQL, and HTML
to assemble at the location of the origin, and there are three
coders available (whose skills are presented in Figure 1).
Although coder 𝑐3 is located closer to the origin than 𝑐1 and
𝑐2, hiring 𝑐3 will not help finish the task. In other words, it
is necessary to further consider individual variations among
different workers and special requirements of tasks.

As in [13, 14], each worker is associated with a set of skills
representing their strengths. Tasks are also associated with a
set of skills representing their special requirements.

R-trees [15] are a classical index structure formultidimen-
sional data. Derived from B-tree, the data in an R-tree are
stored in leaf nodes and all leaves are located in the same
level of the tree. Every internal node contains between𝑚 and

Hindawi
Journal of Sensors
Volume 2017, Article ID 8568613, 10 pages
https://doi.org/10.1155/2017/8568613

https://www.uber.com
http://www.meituan.com
https://doi.org/10.1155/2017/8568613

2 Journal of Sensors

I want to develop a
website. I want some

workers good at .NET, SQL,
and HTML.

I’m good at
.NET and SQL.

I’m good at
HTML and C++.

I’m good at
Python and C.

y

x

c1

c2

c3

Figure 1: Example: variations among workers.

𝑀 child entries, and every leaf node contains between𝑚 and
𝑀 data entries, where𝑀 is usually related to the size of disk
pages, and 𝑚 is predefined such that 𝑚 ≤ 𝑀/2. The tree is
specially structured such that the children of a node overlap
with few data from other nodes. Using an R-tree, we can
dynamically insert/update/delete nodes, and rapidly search
for all nodes located in a given rectangle.

The objective of our problem consists of two parts. First,
workers need tomove to the location of the task but receive no
reward for this movement. In consideration of the workers,
we attempt to reduce the gratuitousmoving distance. Second,
the employer wishes spend the minimum amount necessary
to accomplish the task. In consideration of employers, we
attempt to obtain a team at the lowest cost, on condition that
the skill requirement is satisfied. As the problem definition in
Section 2 shows, the objective of our work contains not only
the distance between the task and workers, but also the total
cost.

Contributions. In summary, our contributions are as follows:
(i) We propose a new Software Development Team

Formation (SDTF) problem and prove that it is NP-
hard.

(ii) Three greedy algorithms are provided to solve the
SDTF problem.

(iii) We employ a multiphase algorithm based on R-trees.
(iv) We verify the effectiveness and efficiency of the

proposed algorithms through extensive experiments
on synthetic and real datasets.

Compared with our previous work [16], we propose a
novel multiple-phase algorithm by using the index structure
of R-trees. Additional experiments are also conducted on
synthetic and real datasets.

The remainder of this paper is organized as follows. In
Section 2, the problem is formally defined and proved to be

NP-hard. In Section 3 three greedy algorithms are provided to
solve the SDTF problem. In Section 4, we propose amultiple-
phase algorithm based on R-trees. Extensive experiments on
real datasets are described in Section 5. Previous work related
to our problem is presented in Section 6, and the conclusions
to this study are presented in Section 7.

2. Problem Statement

First, we introduce the two basic concepts of a task and a
coder. We then formally define the Software Development
Team Formation (SDTF) problem.

Definition 1 (task). A task 𝑡 is defined as ⟨𝑆, 𝐿⟩, where 𝑡.𝑆 is
a set of skills that are indispensable to complete the software
development task 𝑡, and 𝑡.𝐿 is the location specified to meet
up and talk about task 𝑡, which, for example, can be described
by longitude and latitude.

Similar to the definition of a task, a coder is formally
defined as follows.

Definition 2 (coder). A coder 𝑐 is defined as ⟨𝑆, 𝐿, 𝑃⟩, where
𝑐.𝑆 is a set of skills mastered by coder 𝑐, 𝑐.𝐿 is the location of
coder 𝑐, described similarly to that of a task 𝑡, and 𝑐.𝑃 is the
price of coder 𝑐.

Briefly, a team of coders is feasible for a task if the coders
in the team can collaboratively accomplish the task.

Definition 3 (feasible team). A team 𝑇 is defined as a set
of coders {𝑐1, 𝑐2, . . . , 𝑐|𝑇|}. 𝑇 is a feasible team for task 𝑡, if
⋃𝑐𝑖∈𝑇 𝑐𝑖.𝑆 ⊇ 𝑡.𝑆.

Example 4. Suppose that we have a task 𝑡 concerning website
development, where 𝑡.𝑆 = {LINUX, DATABASE,CSS,
HTML} and a universal set of coders 𝐶 = {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6}.

Journal of Sensors 3

Table 1: Coder profile.

Coder 𝑆𝑘𝑖𝑙𝑙 𝑃𝑟𝑖𝑐𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑐1 {PYTHON, CSS, C++} 70 1000
𝑐2 {CSS, LINUX, HTML} 60 5000
𝑐3 {LINUX, HTML} 50 7000
𝑐4 {DATABASE, JAVA} 55 2000
𝑐5 {PYTHON, DATABASE, LINUX} 65 6000
𝑐6 {HTML, C#} 60 3000

The skill set of every 𝑐 ∈ 𝐶 is listed in Table 1. Team
𝑇 = {𝑐2, 𝑐4} is a feasible team because ⋃𝑐∈𝑇 𝑐.𝑆 = {CSS,
LINUX,HTML,DATABASE, JAVA}, which is a superset of
𝑡.𝑆 = {LINUX,DATABASE,CSS, HTML}.

We finally define our problem as follows.

Definition 5 (SDTF problem). Given a task 𝑡 with a set of
skills 𝑡.𝑆 and a location 𝑡.𝐿 and a universal set of coders 𝐶 =
{𝑐1, 𝑐2, . . . , 𝑐|𝐶|}, each with skill set 𝑐𝑖.𝑆, location 𝑐𝑖.𝐿, and price
𝑐𝑖.𝑃, 1 ≤ 𝑖 ≤ |𝐶|, we wish to find a team 𝑇 ⊆ 𝐶 satisfying
⋃𝑐∈𝑇 𝑐.𝑆 ⊇ 𝑡.𝑆, and we minimize Cost = 𝛼 ⋅max𝑐∈𝑇|𝑐.𝐿, 𝑡.𝐿| +
(1 − 𝛼) ⋅ ∑𝑐∈𝑇 𝑐.𝑃, where |𝑐.𝐿, 𝑡.𝐿| represents the distance
between the location of coder 𝑐 and task 𝑡 and 𝛼 ∈ (0, 1) is
a parameter to adjust the weight of distance and price.

Theorem 6. The SDTF problem is NP-hard.

Proof. We prove the theorem by showing that a special case
of the SDTF problem can be reduced from the weighted
set cover problem. An instance of a weighted set cover
problem consists of a set 𝑈 = {1, 2, . . . , 𝑛} and a set 𝑆 =
{𝑆1, 𝑆2, . . . , 𝑆|𝑈|}, where 𝑆𝑖 ⊆ 𝑈 for 1 ≤ 𝑖 ≤ |𝑈|. Each 𝑆𝑖 is
associated with a positive value 𝑊𝑆𝑖 , which can be viewed
as the weight of 𝑆𝑖. The weighted set cover optimization
problem aims to find a subset 𝑆∗ of 𝑆 satisfying⋃𝑆𝑖∈𝑆∗ 𝑆𝑖 ⊇ 𝑈
minimizing∑𝑆𝑖∈𝑆∗𝑊𝑆𝑖 .

We consider a special case of the SDTF problem in which
the task and coders are located in the same position, and the
skill set of the task is the universal set of all skills. To reduce
the weighted set cover problem to the special-case SDTF
problem, we observe that each element in𝑈 corresponds to a
skill in 𝑡.𝑆, each element in 𝑆𝑖 corresponds to a skill in 𝑐𝑖.𝑆,
and the weight of 𝑆𝑖 corresponds to the price of 𝑐𝑖. As the
task and all coders are at the same location, for every team
𝑇, max𝑐∈𝑇|𝑐.𝐿, 𝑡.𝐿| = 0, and we need only minimize∑𝑐∈𝑇 𝑐.𝑃.
Obviously, there exists a solution to the weighted set cover
problem if and only if there exists a solution to the special-
case SDTF problem, and we can obtain an instance of the
special-case SDTF problem from the instance of weighted set
cover problem inpolynomial time.Therefore, the general case
of the SDTF problem is NP-hard.

3. Greedy Solutions for SDTF

In this section,we present three greedy algorithms to solve the
SDTF problem. The first two algorithms greedily choose the
nearest/cheapest coder who can cover at least one uncovered

input: Task 𝑡, Coders 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐|𝐶|}
output: A feasible team 𝑇

(1) 𝑇 ← 0;
(2) while 𝑇 is not feasible do
(3) 𝑐 ← argmin𝑐∈𝐶&&𝑐.𝑆∩𝑡.𝑆 ̸=0(𝑐.𝑃/|𝑐.𝑆 ∩ 𝑡.𝑆|);
(4) 𝑇 ← 𝑇 ∪ {𝑐};
(5) 𝑡.𝑆 ← 𝑡.𝑆 − 𝑐.𝑆;
(6) return 𝑇

Algorithm 1: PF-SDTF.

skill. Because they only consider optimizing part of the objec-
tive function, the solution is sometimes not good enough.
Thuswe propose a third greedy algorithm that considers both
price and distance when choosing a new coder.

3.1. Price First-SDTF Greedy Algorithm. The idea of the first
greedy algorithm is to repeatedly add the cheapest coder to
the team until the team is feasible. The whole procedure of
this price first- (PF-) SDTF is illustrated in Algorithm 1. We
assume that there exists at least one feasible team.

Considering that skills not in the skill set of the task
contribute nothing to the accomplishment of the task, the
term “cheapest coder” must be treated carefully. Here, we
define the Average Price on Uncovered Intersecting Skills
to describe how a coder contributes to the price part of the
objective function:

APUIS (𝑡, 𝑐) = 𝑐.𝑃
𝑐.𝑆 ∩ 𝑡.𝑆𝑢

, (1)

where 𝑆𝑢 is the uncovered skill set of task 𝑡. We can see
that APUIS describes how a coder influences the price part
of the objective function if we add him/her to the final
team. Choosing a coder with lower APUIS means we can
satisfy the requirement of the skills with a lower total price.
Note that when there is no intersection between the skill
set of the worker and the uncovered skill set, APUIS will
be infinity. Because we greedily choose the worker with the
lowest APUIS, we omit this special case in (1).

In line (1) of Algorithm 1, we initialize an empty team 𝑇.
In lines (2)–(5), when 𝑇 is not feasible, we find a coder 𝑐 who
can cover at least one uncovered skill of task 𝑡 and has the
lowest 𝑐.𝑃/|𝑐.𝑆 ∩ 𝑡.𝑆| value, add 𝑐 to team 𝑇, and update 𝑡.𝑆.
Ties are broken by distance first, then arbitrarily. In line (6),
we return the resulting feasible team 𝑇.

3.2. Distance First-SDTF Greedy Algorithm. The idea of dis-
tance first- (DF-) SDTF is to repeatedly add the nearest coder
to the team until the team is feasible. The framework of DF-
SDTF is similar to that of PF-SDTF. In each iteration, we find
the nearest coder 𝑐𝑛 who can cover at least one uncovered skill
of task 𝑡; that is,

𝑐𝑛 = argmin
𝑐∈𝐶&&𝑐.𝑆∩𝑡.𝑆𝑢 ̸=0

|𝑐.𝐿, 𝑡.𝐿| , (2)

4 Journal of Sensors

input: Task 𝑡, Coders 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐|𝐶|}
output: A feasible team 𝑇

(1) 𝑇 ← 0;
(2) while 𝑇 is not feasible do
(3) 𝑐 ← argmin𝑐∈𝐶&&𝑐.𝑆∩𝑡.𝑆 ̸=0|𝑐.𝐿, 𝑡.𝐿|;
(4) 𝑇 ← 𝑇 ∪ {𝑐};
(5) 𝑡.𝑆 ← 𝑡.𝑆 − 𝑐.𝑆;
(6) return 𝑇

Algorithm 2: DF-SDTF.

input: Task 𝑡, Coders 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐|𝐶|}
output: A feasible team 𝑇

(1) 𝑇 ← 0;
(2) while 𝑇 is not feasible do
(3) 𝑐 ← argmax𝑐∈𝐶&&𝑐.𝑆∩𝑡.𝑆 ̸=0Utility(𝑐, 𝑡, 𝑇);
(4) 𝑇 ← 𝑇 ∪ {𝑐};
(5) 𝑡.𝑆 ← 𝑡.𝑆 − 𝑐.𝑆;
(6) return 𝑇

Algorithm 3: DP-SDTF.

where 𝑆𝑢 is the uncovered skill set of task 𝑡. The whole
procedure of DF-SDTF is illustrated in Algorithm 2. We
assume that there exists at least one feasible team.

In line (1), we initialize an empty team 𝑇. In lines (2)–(5),
when 𝑇 is not feasible, we find the nearest coder 𝑐 who can
cover at least one uncovered skill of task 𝑡, add 𝑐 to team 𝑇,
and update 𝑡.𝑆. Ties are broken by price first, then arbitrarily.
In line (6), we return the resulting feasible team 𝑇.

3.3. Distance Price-SDTF Greedy Algorithm. The aforemen-
tioned two greedy algorithms are not effective, because they
only try to optimize part of the objective function. To
optimize both distance and price at every iteration, we design
a utility function Utility. Given a task 𝑡, current team 𝑇, and
coder 𝑐, the definition of Utility is

Utility (𝑐, 𝑡, 𝑇) = |𝑐.𝑆 ∩ 𝑡.𝑆|

𝛼 ⋅ Δ𝐷 (𝑐, 𝑡, 𝑇) + (1 − 𝛼) ⋅ |𝑐.𝑃|
, (3)

where Δ𝐷(𝑐, 𝑡, 𝑇) represents the increment in the maximum
distance if 𝑐 is added to team 𝑇, that is, Δ𝐷(𝑐, 𝑡, 𝑇) =
|𝑐.𝐿, 𝑡.𝐿| − max𝑐∈𝑇|𝑐

.𝐿, 𝑡.𝐿| if |𝑐.𝐿, 𝑡.𝐿| > max𝑐∈𝑇|𝑐
.𝐿, 𝑡.𝐿|,

and Δ𝐷(𝑐, 𝑡, 𝑇) = 0 if |𝑐.𝐿, 𝑡.𝐿| ⩽ max𝑐∈𝑇|𝑐
.𝐿, 𝑡.𝐿|. In fact,

the value of 𝛼⋅Δ𝐷(𝑐, 𝑡, 𝑇)+(1−𝛼)⋅|𝑐.𝑃| in (3) is the increment
in the objective function.

Using this utility function, we have a third greedy algo-
rithm, Distance Price- (DP-) SDTF. The whole procedure of
DP-SDTF is illustrated in Algorithm 3. We assume that there
exists at least one feasible team.

In line (1), we initialize an empty team 𝑇. In lines (2)–(5),
when𝑇 is not feasible, we find a coder 𝑐who gives the highest
utility. Ties are broken by distance first, then arbitrarily. In
line (6), we return the resulting feasible team 𝑇.

4. Multiple-Phase R-Tree Algorithm

In this section, we introduce an algorithm based on the R-
tree data structure. Considering that some previous work has
applied R-trees inNearest Neighbor (NN) searching [17, 18], a
naı̈ve idea is to use anR-tree to accelerate theNNsearch in the
DF-SDTF algorithm proposed in Section 3.2. However, this
simple use of R-trees can only accelerate the search speed and
does not help optimize the final cost. As our experiments will
show, the DF-SDTF algorithm performs worse than the DP-
SDTF algorithm proposed in Section 3.3.The above situation
requires us to find an algorithm that is both efficient and
effective in solving the SDTF problem.

Our original algorithm derives from an intuitive obser-
vation: if we query all nodes located in the square whose
centroid is at the location of the task and whose side length
is 2 ⋅ 𝑙, the distance between the task and the nodes in the
result set will be at most√2 ⋅ 𝑙. This characteristic provides an
applicable tool for the distance part of our objective function.
By choosing a rectangle with suitable sides, we obtain a set
of candidate coders who are close to the location of the task.
The price part of the objective function can also be optimized
if we employ a proper strategy to choose the next coder from
the candidate coder set.

Based on the above observation, we propose theMultiple-
Phase R-tree (MPR) algorithm. The main idea of our algo-
rithm is as follows.

(1) Initialize a new R-tree and insert all coders into the
tree.

(2) In each phase, obtain a candidate set of coders
by querying all nodes located in the square whose
centroid is at the location of the task.

(3) Sort all coders in the candidate set in descending
order of APUIS. For each coder, add him/her to the
final team 𝑇 if his/her skills can cover at least one
uncovered skill in the task.

(4) If team 𝑇 is not feasible, return to step (2) and use a
square with longer sides.

In detail, we generate the list of side lengths by uniformly
dividing the maximum distance between the coders and the
task.Given a parameter 𝑛𝑝 denoting the number of phases, we
first scan the whole set of coders and calculate the maximum
distance between the coders and the task, maxDis. Then, we
iteratively start a phase by using a square with side length
maxDis/𝑛𝑝, 2 ⋅ maxDis/𝑛𝑝, . . . ,maxDis, until we obtain a
feasible team.

The pseudocode of our MPR algorithm is shown in
Algorithm 4. First, we initialize the team 𝑇 and find the
maximum distance between the coders and the task in lines
(1)-(2). Then, we calculate the step size of the sides between
two phases in line (3). In each phase (iteration in lines
(5)–(9)), we first query all nodes located in the square whose
centroid is at the location of the task and whose side length is
2 ⋅ 𝑖 ⋅ step. We then alternately add coders with the minimum
APUIS (lines (7)–(9)). Similarly, ties are broken by distance
first, then arbitrarily. In line (10), we return the resulting
feasible team 𝑇.

Journal of Sensors 5

input: Task 𝑡, R-tree 𝑅, Coders
𝐶 = {𝑐1, 𝑐2, . . . , 𝑐|𝐶|}, number of phases 𝑛𝑝

output: A feasible team 𝑇
(1) 𝑇 ← 0;
(2) maxDis←maximum distance between coders and the task;
(3) step← maxDis/𝑛𝑝;
(4) for 𝑖 ← 1 to 𝑛𝑝 do
(5) 𝐶can ← 𝑅.search(𝑡.𝐿, 2 ⋅ 𝑖 ⋅ step);
(6) while 𝑇 is not feasible do
(7) 𝑐 ← argmin𝑐∈𝐶can&&𝑐.𝑆∩𝑡.𝑆 ̸=0(𝑐.𝑃/|𝑐.𝑆 ∩ 𝑡.𝑆|);
(8) 𝑇 ← 𝑇 ∪ {𝑐};
(9) 𝑡.𝑆 ← 𝑡.𝑆 − 𝑐.𝑆;
(10) return 𝑇

Algorithm 4: MPR.

Table 2: Synthetic dataset.

Factor Setting
𝛼 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
|𝑡.Skills| 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
| ⋃𝑐∈𝐶 𝑐.Skills| 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200
|𝐶| 1W, 2W, 3W, 4W, 5W, 6W, 7W, 8W, 9W, 10W

5. Evaluation

We applied our four algorithms to synthetic and real datasets.
The algorithms were implemented in C++, and the experi-
ments were performed on a machine with an Intel i7-4710mq
2.50GHZ 4-core CPU and 8GB memory.

5.1. Datasets. We use real and synthetic datasets to evalu-
ate our algorithms. The real dataset is taken from CSTO
(http://www.csto.com/) and includes 2033 active coders. In
the CSTO dataset, each task is associated with a set of skills
needed to complete a software development task, and each
coder is associated with a set of skills and an average price
that can be deduced from the history data. As few coders have
associated price information (because many coders have not
any completed tasks), we analyze the price distribution using
coders associated with price information. Except for some
expensive coders, the price of a coder is uniformly distributed
in the range 0–5000 and is unrelated to the number of
mastered skills. As the CSTO data are not associated with
location information, we generate coordinates for each coder
according to a uniform distribution.

For the synthetic data, based on our observations of the
real dataset, we generate the price 𝑐.𝑃 of coder 𝑐 following
a uniform distribution. We assume that each coder has
5–25 skills, which is common in practice. The distance from
each coder to the task is generated according to a uniform
distribution. The statistics and configuration of synthetic
data are illustrated in Table 2, where the default settings are
marked in bold font.

2300

2400

2500

2600

2700

2800

2900

3000

C
os

t

5 10 453530 6015 25 50 5520 7570 8040 65 90 9585
Number of phases

Figure 2: Cost of varying 𝑛𝑝.

5.2. Number of Phases in MPR Algorithm. In the MPR algo-
rithm, we introduce a new parameter representing the total
number of phases, 𝑛𝑝. Before conducting experiments on the
synthetic and real data, we determined an appropriate value
of 𝑛𝑝 to ensure better performance of the MPR algorithm.
We first generate a synthetic dataset with the default settings
to preexamine how 𝑛𝑝 affects the performance of the MPR
algorithm. The results are shown in Figure 2 for 𝑛𝑝 from 5
to 100. According to these results, we use 𝑛𝑝 = 45 in all
subsequent MPR experiments.

5.3. Experiments on Synthetic Datasets. The experimental
results using the synthetic data are shown in Figures 3 and
4. In this section, we measure the effectiveness and efficiency
of these four algorithms and analyze how various parameters
affect the results given by each algorithm.

Effectiveness of Proposed Algorithms. Figure 3 shows the
effectiveness of our four algorithms.The DP-SDTF andMPR
algorithms offer similar performance and outperform both
DF-SDTF and PF-SDTF.

Efficiency of Proposed Algorithms. Figure 4 shows the effi-
ciency of our four algorithms. We can observe that although
DP-SDTF and MPR have similar cost results, MPR is faster

http://www.csto.com/

6 Journal of Sensors

×104

0

0.5

1

1.5

2

2.5

C
os

t

0.
4

0.
2

0.
1

0.
5

0.
8

0.
6

0.
3

0.
7

0.
9

PF
DF

DP
MPR

(a) Cost of varying 𝛼

17
0

16
0

15
0

19
0

20
0

18
0

12
0

14
0

10
0

11
0

13
0

|SKILL|

0

2000

4000

6000

8000

10000

12000

14000

C
os

t

PF
DF

DP
MPR

(b) Cost of varying |𝑐.𝑆|

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

C
os

t

13 148 9 10 11 126 7 155

|t.３ＥＣＦＦＭ|

PF
DF

DP
MPR

(c) Cost of varying |𝑡.𝑆|

2000

4000

6000

8000

10000

12000

14000

16000

C
os

t

40
00

0

50
00

0

10
00

00

20
00

0

60
00

0

70
00

0

80
00

0

90
00

0

30
00

0

10
00

0

|C|

PF
DF

DP
MPR

(d) Cost of varying |𝐶|

Figure 3: Results on synthetic data.

than DP-SDTF. This is because we use the R-tree to prune
some unvalued nodes and accelerate the process of the query.
We can also observe how the restriction of skill satisfaction
affects the running time of four algorithms. Although PF-
SDTF, DF-SDTF, and DP-SDTF all use greedy strategy and
their structures are similar, DF-SDTF algorithm consumes
more time than that of PF-SDTF and DP-SDTF algorithms.
This is because DF-SDTF algorithm only considers the effect
of the distance. As a result DF-SDTF needs more coders to
make the team feasible, resulting in more iterations than the
PF-SDTF and DP-SDTF algorithms.

Effect of 𝛼. Figure 3(a) shows the effectiveness of varying 𝛼.
As 𝛼 varies from 0.1 to 0.9, the cost of DP-SDTF decreases
smoothly, indicating that ∑𝑐∈𝑇 𝑐.𝑃 contributes more than
max𝑐∈𝑇|𝑐.𝐿, 𝑡.𝐿|. Because the DF-SDTF (PF-SDTF) algorithm
only considers distance (price), when 𝛼 is high (low), the
performance is similar to that of theDP-SDTF andMPRalgo-
rithms. However, as 𝛼 decreases (increases), the performance
of DF-SDTF (PF-SDTF) becomes worse.

Effect of |𝑐.𝑆|, |𝑡.𝑆|, and |𝐶|. The effect of varying |𝑐.𝑆|, |𝑡.𝑆|,
and |𝐶| is illustrated in Figures 3(b), 3(c), and 3(d). Because

Journal of Sensors 7

0.
3

0.
8

0.
1

0.
5

0.
7

0.
9

0.
6

0.
4

0.
2

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06
C

os
t

PF
DF

DP
MPR

(a) Time of varying 𝛼

0.01

0.02

0.03

0.04

0.05

0.06

0.07

C
os

t

11
0

12
0

13
0

14
0

18
0

16
0

17
0

19
0

20
0

15
0

10
0

|SKILL|

PF
DF

DP
MPR

(b) Time of varying |𝑐.𝑆|

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

C
os

t

6 875 9 12 1513 141110

|t.３ＥＣＦＦＭ|

PF
DF

DP
MPR

(c) Time of varying |𝑡.𝑆|

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
C

os
t

10
00

00

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

20
00

0

10
00

0

|C|

PF
DF

DP
MPR

(d) Time of varying |𝐶|

Figure 4: Running time on synthetic data.

the default setting of 𝛼 is 0.5, finding a good team requires
distance and price to be considered simultaneously. We can
observe that the DP-SDTF and MPR algorithms perform
better, with the DF-SDTF and PF-SDTF costing 3 to 4 times
more.

5.4. Experiments on the Real Dataset. The experimental
results using the real dataset are shown in Figure 5. Figure 5(a)
shows the effects of varying 𝛼, and Figure 5(b) shows the
effects of varying |𝑡.𝑆|. Varying 𝛼 produces a similar effect as
with the synthetic dataset.When varying |𝑡.𝑆|, the costs of the
four algorithms oscillates, probably because of the structure
of the CSTO dataset. Unlike the experiments on synthetic
data, the MPR algorithm performs worse than DP-SDTF but

still outperforms DF-SDTF and PF-SDTF. This is probably
because, in real datasets, different skills may make different
contributions, leading to a gap between results with synthetic
data and real data.

Comparisonwith the Exact Result. Because the SDTFproblem
is NP-hard, we only conduct small-size experiments to
compare the output of our DP-SDTF and MPR algorithms
with the exact solution. The setting is 𝑡.𝑆 = 5 and |𝐶| = 300,
where coders are randomly chosen from the real dataset. The
experimental results are shown in Figure 6. We can observe
that the performance of DP-SDTF is similar to that of the
exact algorithm, but the cost of the MPR algorithm is 1.25 to
1.5 times the exact minimum cost.

8 Journal of Sensors

×104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
C

os
t

0.2 0.4 0.5 0.60.3 0.7 0.8 0.90.1

PF
DF

DP
MPR

(a) Cost of varying 𝛼

×104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
os

t

7 95 6 8 10 13 15141211
|t.３ＥＣＦＦＭ|

PF
DF

DP
MPR

(b) Cost of varying |𝑡.𝑆|

Figure 5: Results on real data.

DP
Exact
MPR

100

150

200

250

300

350

400

C
os

t

0.2 0.4 0.60.1 0.8 0.90.50.3 0.7
||

Figure 6: DP-SDTF versus MPR versus exact results.

Conclusion. From the extensive experiments conducted on
both real and synthetic data to validate our four algorithms,
we found thatDF-SDTF (PF-SDTF) algorithm,which focuses
on the distance (price) part of the objective function, per-
forms better with larger (smaller) values of 𝛼. The DP-
SDTF algorithm gives the best performance among the
four algorithms discussed here because it considers both
parts of the objective function. The fourth algorithm, MPR,
accelerates the query process with little increase in the cost,
which is more applicable in practice.

6. Related Work

The SDTF problem tackled in this paper covers the domains
of Team Formation and Spatial Crowdsourcing. On the one
hand, the SDTF problem can be simplified to the task
assignment problem if we ignore the skill constraint. On the
other hand, it is exactly the most distinctive requirement
that the skills of a team must cover the skills of the task.
Previous work related to these two domains is introduced in
the following subsections.

6.1. Team Formation. The team formation problem was first
proposed in [19]. The problem requires a team of workers
that (1) its skills satisfy the requirement of the task; (2) the
overall communication cost is minimum. In this paper, the
NP-hard nature of this problem is also proved. The problem
has been extended by associating each worker with a capacity
[20], which is the maximum number of tasks assigned to the
worker. To solve the capacitated team formation problem,
two approximation algorithms with proved guarantees were
proposed. Different from [19, 20], which only include a
single task, the team formation problem has been considered
with multiple tasks and workers in both offline and online
scenarios [21].While the above-mentioned studies attempt to
optimize the overall communication cost, the workload can
be balanced among workers by treating the communication
cost as a restrictive constraint [22]. As the above shows,
most studies on team formation focus on skills satisfaction in
communicative graphs, while ignoring the influence of spatial
information.

6.2. Spatial Crowdsourcing. The problem studied in this
paper is an extension of the task assignment problem in
spatial crowdsourcing, known as the server-assigned task
assignment problem [10, 11], in which workers cannot reject

Journal of Sensors 9

the assigned tasks. Recently, task assignment in real-time
spatial crowdsourcing has also been studied by the online
algorithmic model [12, 23]. Based on the original task
assignment problem, both [24, 25] study the conflict-aware
task assignment problem, in which tasks may conflict with
each other and thus cannot be assigned to the same worker.
In addition, the work [26] not only considers spatiotemporal
conflicts of tasks but also schedules the plan that each worker
complete tasks [26]. Furthermore, Kazemi et al. propose the
quality-based task assignment problem [27], which utilizes
majority voting techniques to guarantee the quality of task
assignment results [28–30].

Although [13, 14] integrate the task assignment problem
and team formation problem and propose a two-level-based
framework to solve the problem, there are two main differ-
ences between [13, 14] and our work: (1) there is no capacity
constraint in our work, which means that there are more
candidates in the search space; (2) the objective of our work
considers both the distance between the task andworkers and
the overall cost, whereas [13, 14] only attempt tominimize the
overall cost.

7. Conclusion

With the development of sensors, particularly vehicle sensors
and mobile sensors, spatial crowdsourcing is gaining ever
more attention. In this paper, we propose a novel spatial
crowdsourcing problem called Software Development Team
Formation (SDTF). We prove that SDTF is NP-hard and
design three greedy algorithms and an index-based algorithm
to solve the SDTF problem. The first two greedy algorithms,
DF-SDTF and PF-SDTF, only consider part of the opti-
mization objective, and the performance is therefore below
expectations. To overcome the shortcomings of these two
algorithms, we design a third greedy algorithm, called DP-
SDTF, which considers both parts of the optimization goal.
In addition, we develop a multiple-phase algorithm based
on R-trees called MPR. The MPR algorithm can accelerate
the query process with little increase in cost. We conduct
extensive experiments to evaluate the performance of our
algorithms. The results show that our DP-SDTF algorithm
achieves similar performance to the exact algorithm.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work is supported in part by National Grand Fun-
damental Research 973 Program of China under Grant
2015CB358700, NSFCGrant no. 71531001, and SKLSDEOpen
Program SKLSDE-2016ZX-13.

References

[1] G. Liang, J. Ca, X. Liu, and J. Liang, “Smart world: a better
world,” Science China Information Sciences, vol. 59, no. 4, Article
ID 043401, 2016.

[2] B. Zhu, L. Xie, D. Han, X.Meng, and R. Teo, “A survey on recent
progress in control of swarm systems,” Science China Informa-
tion Sciences, vol. 60, no. 7, 070201, 24 pages, 2017.

[3] J. Hu, B. B. Park, and Y.-J. Lee, “Transit signal priority accom-
modating conflicting requests under Connected Vehicles tech-
nology,” Transportation Research Part C: Emerging Technologies,
vol. 69, pp. 173–192, 2016.

[4] J. Hu, M. D. Fontaine, and J. Ma, “Quality of private sector
travel-time data on arterials,” Journal of Transportation Engi-
neering, vol. 142, no. 4, Article ID 04016010, 2016.

[5] C.Ding,D.Wang, X.Ma, andH. Li, “Predicting short-term sub-
way ridership and prioritizing its influential factors using gradi-
ent boosting decision trees,” Sustainability, vol. 8, no. 11, article
no. 1100, 2016.

[6] H. Jiang, J. Hu, S. An, M. Wang, and B. B. Park, “Eco approach-
ing at an isolated signalized intersection under partially con-
nected and automated vehicles environment,” Transportation
Research Part C: Emerging Technologies, vol. 79, pp. 290–307,
2017.

[7] C. Ding, X. Wu, G. Yu, and Y. Wang, “A gradient boosting logit
model to investigate driver’s stop-or-run behavior at signalized
intersections using high-resolution traffic data,” Transportation
Research Part C: Emerging Technologies, vol. 72, pp. 225–238,
2016.

[8] C. Ding, C. Liu, Y. Zhang, J. W. Yang, and Y. P. Wang, “Investi-
gating the impacts of built environment on vehicle miles trav-
eled and energy consumption: Differences between commuting
and non-commuting trips,” Cities, vol. 68, pp. 25–36, 2017.

[9] Y. Tong, Y. Chen, Z. Zhou et al., “The simpler the better: a
unified approach to predicting original taxi demands based on
large-scale online platforms,” in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1653–1662, 2017.

[10] L. Kazemi and C. Shahabi, “GeoCrowd: enabling query answer-
ing with spatial crowdsourcing,” in Proceedings of the 20th
ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (GIS ’12), pp. 189–198, ACM,
November 2012.

[11] H. To, C. Shahabi, and L. Kazemi, “A server-assigned spatial
crowdsourcing framework,” ACM Transactions on Spatial Algo-
rithms and Systems, vol. 1, no. 1, p. 2, 2015.

[12] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen, “Online mobile
Micro-TaskAllocation in spatial crowdsourcing,” in Proceedings
of the 32nd IEEE International Conference on Data Engineering,
ICDE ’16, pp. 49–60, IEEE, Helsinki, Finland, 2016.

[13] D.Gao, Y. Tong, J. She, T. Song, L. Chen, andK. Xu, “Top-k team
recommendation in spatial crowdsourcing,” in Proceedings
of the 17th International Conference on Web-Age Information
Management, WAIM ’16, vol. 9658 of Lecture Notes in Computer
Science (including subseries LectureNotes inArtificial Intelligence
and Lecture Notes in Bioinformatics), pp. 191–204, June 2016.

[14] D. Gao, Y. Tong, J. She, T. Song, L. Chen, and K. Xu, “Top-k
TeamRecommendation and ItsVariants in Spatial Crowdsourc-
ing,” Data Science and Engineering, vol. 2, no. 2, pp. 136–150,
2017.

[15] A. Guttman, “R-trees:a dynamic index structure for spatial
searching,” in Proceedings of the the 1984 ACM SIGMOD
international conference, pp. 47–57, June 1984.

[16] Q. Tao, T. Song, and K. Xu, “Finding optimal team for multi-
skill task in spatial crowdsourcing,” in Proceedings of the 2th
WORKSHOP on Data-Driven Crowdsourcing (DDC 2017) in
conjunction with APWeb-WAIM 2017, 2017.

10 Journal of Sensors

[17] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest Neighbor
Queries,” ACM SIGMOD Record, vol. 24, no. 2, pp. 71–79, 1995.

[18] G. R. Hjaltason and H. Samet, “Distance browsing in spatial
databases,”ACMTransactions onDatabase Systems (TODS), vol.
24, no. 2, pp. 265–318, 1999.

[19] T. Lappas, K. Liu, and E. Terzi, “Finding a team of experts
in social networks,” in Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, KDD ’09, pp. 467–475, July 2009.

[20] S. Datta, A. Majumder, and K. V. M. Naidu, “Capacitated
team formation problem on social networks,” in Proceedings of
the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2012, pp. 1005–1013, August
2012.

[21] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis, and
S. Leonardi, “Power in unity: Forming teams in large-scale
community systems,” in Proceedings of the 19th International
Conference on Information andKnowledgeManagement andCo-
located Workshops, CIKM’10, pp. 599–608, October 2010.

[22] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis, and S.
Leonardi, “Online team formation in social networks,” in Pro-
ceedings of the 21st Annual Conference on World Wide Web,
WWW’12, pp. 839–848, fra, April 2012.

[23] Y. Tong, J. She, B. Ding, L. Chen, T. Wo, and K. Xu, “Online
minimum matching in realtime spatial data: Experiments and
analysis,” in Proceedings of the 42nd International Conference on
Very Large Data Bases, VLDB 2016, pp. 1053–1064, ind, Septem-
ber 2016.

[24] J. She, Y. Tong, L. Chen, and C. C. Cao, “Conflict-aware event-
participant arrangement and its variant for online setting,” IEEE
Transactions on Knowledge and Data Engineering, vol. 28, no. 9,
pp. 2281–2295, 2016.

[25] Y. Tong, J. She, and R. Meng, “Bottleneck-aware arrangement
over event-based social networks: the max-min approach,”
World Wide Web, vol. 19, no. 6, pp. 1151–1177, 2016.

[26] J. She, Y. Tong, and L. Chen, “Utility-aware social event-
participant planning,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD
2015, pp. 1629–1643, June 2015.

[27] L. Kazemi, C. Shahabi, and L. Chen, “GeoTruCrowd: trustwor-
thy query answeringwith spatial crowdsourcing,” inProceedings
of the 21st ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, ACM SIGSPA-
TIAL GIS 2013, pp. 304–313, November 2013.

[28] C. C. Cao, Y. Tong, L. Chen, and H. V. Jagadish, “Wisemarket: a
new paradigm for managing wisdom of online social users,” in
Proceedings of the the 19th ACM SIGKDD international confer-
ence, pp. 455–463, 2013.

[29] Y. Tong, L. Chen, and Y. Cheng, “Mining frequent itemsets over
uncertain databases,” Proceedings of the VLDB Endowment, vol.
5, no. 11, pp. 1650–1661, 2012.

[30] Y. Tong, L. Chen, and B. Ding, “Discovering threshold-based
frequent closed itemsets over probabilistic data,” in Proceedings
of the IEEE 28th International Conference on Data Engineering,
ICDE 2012, pp. 270–281, April 2012.

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

