143 research outputs found

    Analysis of Building Energy Savings Potential for Metal Panel Curtain Wall Building by Reducing Thermal Bridges at Joints Between Panels

    Get PDF
    AbstractTo achieve national greenhouse gas reduction in the building sector, heating and cooling energy in buildings should be reduced. The government has strengthened regulations on insulation performance for building energy savings. However, the building envelope has various thermal bridges. In particular, a metal panel curtain wall comprises a number of thermal bridges at joints between the panels and the fixing units, thus degrading the overall thermal performance. To reduce building energy, it is necessary to reduce thermal bridges in building envelopes. This study aims to analyze the energy saving potential achieved by reducing thermal bridges. For this, the insulation performance and building energy needs of the existing and alternative metal panel curtain wall were evaluated. The alternative metal panel curtain wall that uses plastic molds at joints between panels and the thermally-broken brackets was suggested to reduce heat loss through thermal bridges. As results, the effective U-value of the alternative metal panel curtain wall was reduced by 72% compared with the existing metal panel curtain wall. In addition, annual heating energy needs of the alternative metal panel curtain wall building was reduced by 26%, and annual total energy needs was reduced by 6% because annual cooling energy needs of it slightly increased compared with the existing metal panel curtain wall. In conclusion, the alternative metal panel curtain wall considerably influenced the savings in building energy needs by reducing thermal bridges

    Empirical Validation of Heat Transfer Performance Simulation of Graphite/PCM Concrete Materials for Thermally Activated Building System

    Get PDF
    To increase the heat capacity in lightweight construction materials, a phase change material (PCM) can be introduced to building elements. A thermally activated building system (TABS) with graphite/PCM concrete hollow core slab is suggested as an energy-efficient technology to shift and reduce the peak thermal load in buildings. An evaluation of heat storage and dissipation characteristics of TABS in graphite/PCM concrete has been conducted using dynamic simulations, but empirical validation is necessary to acceptably predict the thermal behavior of graphite/PCM concrete. This study aimed to validate the thermal behavior of graphite/PCM concrete through a three-dimensional transient heat transfer simulation. The simulation results were compared to experimental results from previous studies of concrete and graphite/PCM concrete. The overall thermal behavior for both materials was found to be similar to experiment results. Limitations in the simulation modeling, which included determination of the indoor heat transfer coefficient, assumption of constant thermal conductivity with temperature, and assumption of specimen homogeneity, led to slight differences between the measured and simulated results

    Spontaneous Oscillatory Rhythm in Retinal Activities of Two Retinal Degeneration (rd1 and rd10) Mice

    Get PDF
    Previously, we reported that besides retinal ganglion cell (RGC) spike, there is ~ 10 Hz oscillatory rhythmic activity in local field potential (LFP) in retinal degeneration model, rd1 mice. The more recently identified rd10 mice have a later onset and slower rate of photoreceptor degeneration than the rd1 mice, providing more therapeutic potential. In this study, before adapting rd10 mice as a new animal model for our electrical stimulation study, we investigated electrical characteristics of rd10 mice. From the raw waveform of recording using 8×8 microelectrode array (MEA) from in vitro-whole mount retina, RGC spikes and LFP were isolated by using different filter setting. Fourier transform was performed for detection of frequency of bursting RGC spikes and oscillatory field potential (OFP). In rd1 mice, ~10 Hz rhythmic burst of spontaneous RGC spikes is always phase-locked with the OFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, there is a strong phase-locking tendency between the spectral peak of bursting RGC spikes (~5 Hz) and the first peak of OFP (~5 Hz) across different age groups. But this phase-locking property is not robust as in rd1 retina, but maintains for a few seconds. Since rd1 and rd10 retina show phase-locking property at different frequency (~10 Hz vs. ~5 Hz), we expect different response patterns to electrical stimulus between rd1 and rd10 retina. Therefore, to extract optimal stimulation parameters in rd10 retina, first we might define selection criteria for responding rd10 ganglion cells to electrical stimulus

    Korean Cardiac Arrest Research Consortium (KoCARC): rationale, development, and implementation

    Get PDF
    Objective This study aimed to describe the conceptualization, development, and implementation processes of the newly established Korean Cardiac Arrest Resuscitation Consortium (KoCARC) to improve out-of-hospital cardiac arrest (OHCA) outcomes. Methods The KoCARC was established in 2014 by recruiting hospitals willing to participate voluntarily. To enhance professionalism in research, seven research committees, the Epidemiology and Preventive Research Committee, Community Resuscitation Research Committee, Emergency Medical System Resuscitation Research Committee, Hospital Resuscitation Research Committee, Hypothermia and Postresuscitation Care Research Committee, Cardiac Care Resuscitation Committee, and Pediatric Resuscitation Research Committee, were organized under a steering committee. The KoCARC registry was developed with variables incorporated in the currently existing regional OHCA registries and Utstein templates and were collected via a web-based electronic database system. The KoCARC study population comprises patients visiting the participating hospitals who had been treated by the emergency medical system for OHCA presumed to have a cardiac etiology. Results A total of 62 hospitals volunteered to participate in the KoCARC, which captures 33.0% of the study population in Korea. Web-based data collection started in October 2015, and to date (December 2016), there were 3,187 cases compiled in the registry collected from 32 hospitals. Conclusion The KoCARC is a self-funded, voluntary, hospital-based collaborative research network providing high level evidence in the field of OHCA and resuscitation. This paper will serve as a reference for subsequent KoCARC manuscripts and for data elements collected in the study

    Alveolar Macrophages Treated With Bacillus subtilis Spore Protect Mice Infected With Respiratory Syncytial Virus A2

    Get PDF
    Respiratory syncytial virus (RSV) is a major pathogen that infects lower respiratory tract and causes a common respiratory disease. Despite serious pathological consequences with this virus, effective treatments for controlling RSV infection remain unsolved, along with poor innate immune responses induced at the initial stage of RSV infection. Such a poor innate defense mechanism against RSV leads us to study the role of alveolar macrophage (AM) that is one of the primary innate immune cell types in the respiratory tract and may contribute to protective responses against RSV infection. As an effective strategy for enhancing anti-viral function of AM, this study suggests the intranasal administration of Bacillus subtilis spore which induces expansion of AM in the lung with activation and enhanced production of inflammatory cytokines along with several genes associated with M1 macrophage differentiation. Such effect by spore on AM was largely dependent on TLR-MyD88 signaling and, most importantly, resulted in a profound reduction of viral titers and pathological lung injury upon RSV infection. Taken together, our results suggest a protective role of AM in RSV infection and its functional modulation by B. subtilis spore, which may be a useful and potential therapeutic approach against RSV

    Long-term efficacy, safety and immunogenicity in patients with rheumatoid arthritis continuing on an etanercept biosimilar (LBEC0101) or switching from reference etanercept to LBEC0101: an open-label extension of a phase III multicentre, randomised, double-blind, parallel-group study

    Get PDF
    Background To evaluate the long-term efficacy, safety and immunogenicity of continuing LBEC0101; the etanercept (ETN) biosimilar; or switching from the ETN reference product (RP) to LBEC0101 in patients with rheumatoid arthritis (RA). Methods This multicentre, single-arm, open-label extension study enrolled patients who had completed a 52-week randomised, double-blind, parallel phase III trial of LBEC0101 vs ETN-RP. Patients treated with ETN-RP during the randomised controlled trial switched to LBEC0101; those treated with LBEC0101 continued to receive LBEC0101 in this study. LBEC0101 (50 mg) was administered subcutaneously once per week for 48 weeks with a stable dose of methotrexate. Efficacy, safety and immunogenicity of LBEC0101 were assessed up to week 100. Results A total of 148 patients entered this extension study (70 in the maintenance group and 78 in the switch group). The 28-joint disease activity scores (DAS28)-erythrocyte sedimentation rate (ESR) were maintained in both groups from week 52 to week 100 (from 3.068 to 3.103 in the maintenance group vs. from 3.161 to 3.079 in the switch group). ACR response rates at week 100 for the maintenance vs. switch groups were 79.7% vs. 83.3% for ACR20, 65.2% vs. 66.7% for ACR50 and 44.9% vs. 42.3% for ACR70. The incidence of adverse events and the proportion of patients with newly developed antidrug antibodies were similar in the maintenance and switch groups (70.0% and 70.5%, 1.4% and 1.3%, respectively). Conclusions Administration of LBEC0101 showed sustained efficacy and acceptable safety in patients with RA after continued therapy or after switching from ETN-RP to LBEC0101. Trial registration ClinicalTrials.gov, NCT02715908. Registered 22 March 2016.This extension study was funded by LG Chem, Ltd. (formerly, LG Life Sciences, Ltd), Mochida Pharmaceutical Co., Ltd. and Korea Health Industry Development Institute
    corecore