4 research outputs found

    ABI4 Activates DGAT1 Expression in Arabidopsis Seedlings during Nitrogen Deficiency1[C][W][OA]

    No full text
    Triacylglycerol (TAG) is the major seed storage lipid and is important for biofuel and other renewable chemical uses. Acyl-coenzyme A:diacylglycerol acyltransferase1 (DGAT1) is the rate-limiting enzyme in the TAG biosynthesis pathway, but the mechanism of its regulation is unknown. Here, we show that TAG accumulation in Arabidopsis (Arabidopsis thaliana) seedlings increased significantly during nitrogen deprivation (0.1 mm nitrogen) with concomitant induction of genes involved in TAG biosynthesis and accumulation, such as DGAT1 and OLEOSIN1. Nitrogen-deficient seedlings were used to determine the key factors contributing to ectopic TAG accumulation in vegetative tissues. Under low-nitrogen conditions, the phytohormone abscisic acid plays a crucial role in promoting TAG accumulation in Arabidopsis seedlings. Yeast one-hybrid and electrophoretic mobility shift assays demonstrated that ABSCISIC ACID INSENSITIVE4 (ABI4), an important transcriptional factor in the abscisic acid signaling pathway, bound directly to the CE1-like elements (CACCG) present in DGAT1 promoters. Genetic studies also revealed that TAG accumulation and DGAT1 expression were reduced in the abi4 mutant. Taken together, our results indicate that abscisic acid signaling is part of the regulatory machinery governing TAG ectopic accumulation and that ABI4 is essential for the activation of DGAT1 in Arabidopsis seedlings during nitrogen deficiency

    Nitrogen deficiency system is helpful in characterizing regulation mechanisms of ectopic triacylglycerol accumulation in Arabidopsis seedlings

    No full text
    Triacylglycerol (TAG) is the major storage component accumulated in seed. However the regulatory mechanism of TAG synthesis and accumulation in non-seed tissues remains unknown. Recently, we found that nitrogen (N) deficiency (0.1mM N) caused an inducement of TAG biosynthesis in Arabidopsis seedlings. ABSCISIC ACID INSENSITIVE 4 (ABI4) was essential for the activation of Acyl-CoA:diacylglycerol acyltransferase1(DGAT1) expression during N deficiency in Arabidopsis seedlings. In this addendum, we further discussed the approaches to provide a net increase in total oil production in higher plants by using the low N platform. First, the N-deficient seedlings can be used to determine the key factors that regulate the ectopic expression of key genes in TAG metabolism. Second, the research on the relationship between TAG homeostasis and cell division will be helpful to find the key factors that specifically regulate TAG accumulation under the nutrient-limited condition

    Westem Language Publications on Religions in China, 1990-1994

    No full text
    corecore