68 research outputs found
Saikosaponin A Alleviates Symptoms of Attention Deficit Hyperactivity Disorder through Downregulation of DAT and Enhancing BDNF Expression in Spontaneous Hypertensive Rats
The disturbed dopamine availability and brain-derived neurotrophic factor (BDNF) expression are due in part to be associated with attention deficit hyperactivity disorder (ADHD). In this study, we investigated the therapeutical effect of saikosaponin a (SSa) isolated from Bupleurum Chinese DC, against spontaneously hypertensive rat (SHR) model of ADHD. Methylphenidate and SSa were orally administered for 3 weeks. Activity was assessed by open-field test and Morris water maze test. Dopamine (DA) and BDNF were determined in specific brain regions. The mRNA or protein expression of tyrosine hydroxylase (TH), dopamine transporter (DAT), and vesicles monoamine transporter (VMAT) was also studied. Both MPH and SSa reduced hyperactivity and improved the spatial learning memory deficit in SHRs. An increased DA concentration in the prefrontal cortex (PFC) and striatum was also observed after treating with the SSa. The increased DA concentration may partially be attributed to the decreased mRNA and protein expression of DAT in PFC while SSa exhibited no significant effects on the mRNA expression of TH and VMAT in PFC of SHRs. In addition, BDNF expression in SHRs was also increased after treating with SSa or MPH. The obtained result suggested that SSa may be a potential drug for treating ADHD
Recommended from our members
Transport‐Friendly Microstructure in SSC‐MEA: Unveiling the SSC Ionomer‐Based Membrane Electrode Assemblies for Enhanced Fuel Cell Performance
The significant role of the cathodic binder in modulating mass transport within the catalyst layer (CL) of fuel cells is essential for optimizing cell performance. This investigation focuses on enhancing the membrane electrode assembly (MEA) through the utilization of a short-side-chain perfluoro-sulfonic acid (SSC-PFSA) ionomer as the cathode binder, referred to as SSC-MEA. This study meticulously visualizes the distinctive interpenetrating networks of ionomers and catalysts, and explicitly clarifies the triple-phase interface, unveiling the transport-friendly microstructure and transport mechanisms inherent in SSC-MEA. The SSC-MEA exhibits advantageous microstructural features, including a better-connected ionomer network and well-organized hierarchical porous structure, culminating in superior mass transfer properties. Relative to the MEA bonded by long-side-chain perfluoro-sulfonic acid (LSC-PFSA) ionomer, noted as LSC-MEA, SSC-MEA exhibits a notable peak power density (1.23 W cm-2), efficient O2 transport, and remarkable proton conductivity (65% improvement) at 65 °C and 70% relativity humidity (RH). These findings establish crucial insights into the intricate morphology-transport-performance relationship in the CL, thereby providing strategic guidance for developing highly efficient MEA
Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes
Two-photon Rabi splitting in a cavity-dot system provides a basis for
multi-qubit coherent control in quantum photonic network. Here we report on
two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum
dot was grown intentionally large in size for large oscillation strength and
small biexciton binding energy. Both exciton and biexciton transitions couple
to a high quality factor photonic crystal cavity with large coupling strengths
over 130 eV. Furthermore, the small binding energy enables the cavity to
simultaneously couple with two exciton states. Thereby two-photon Rabi
splitting between biexciton and cavity is achieved, which can be well
reproduced by theoretical calculations with quantum master equations.Comment: 12 pages, 4 figure
Enhanced strong interaction between nanocavities and p-shell excitons beyond the dipole approximation
Large coupling strengths in exciton-photon interactions are important for the quantum photonic network, while strong cavity–quantum dot interactions have been focused on
s-shell excitons with small coupling strengths. Here we demonstrate strong interactions between cavities and
p-shell excitons with a great enhancement by the in situ wave-function control. The
p-shell excitons are demonstrated with much larger wave-function extents and nonlocal interactions beyond the dipole approximation. Then the interaction is tuned from the nonlocal to the local regime by the wave function shrinking, during which the enhancement is obtained. A large coupling strength of
210
μ
eV
has been achieved, indicating the great potential of
p-shell excitons for coherent information exchange. Furthermore, we propose a distributed delay model to quantitatively explain the coupling strength variation, revealing the intertwining of excitons and photons beyond the dipole approximation
- …