113 research outputs found

    Image Captioning with Context-Aware Auxiliary Guidance

    Full text link
    Image captioning is a challenging computer vision task, which aims to generate a natural language description of an image. Most recent researches follow the encoder-decoder framework which depends heavily on the previous generated words for the current prediction. Such methods can not effectively take advantage of the future predicted information to learn complete semantics. In this paper, we propose Context-Aware Auxiliary Guidance (CAAG) mechanism that can guide the captioning model to perceive global contexts. Upon the captioning model, CAAG performs semantic attention that selectively concentrates on useful information of the global predictions to reproduce the current generation. To validate the adaptability of the method, we apply CAAG to three popular captioners and our proposal achieves competitive performance on the challenging Microsoft COCO image captioning benchmark, e.g. 132.2 CIDEr-D score on Karpathy split and 130.7 CIDEr-D (c40) score on official online evaluation server

    ViCo: Engaging Video Comment Generation with Human Preference Rewards

    Full text link
    Engaging video comments play an important role in video social media, as they are the carrier of feelings, thoughts, or humor of the audience. Preliminary works have made initial exploration for video comment generation by adopting caption-style encoder-decoder models. However, comment generation presents some unique challenges distinct from caption generation, which makes these methods somewhat less effective at generating engaging comments. In contrast to the objective and descriptive nature of captions, comments tend to be inherently subjective, making it hard to quantify and evaluate the engagement of comments. Furthermore, the scarcity of truly engaging comments brings difficulty to collecting enough high-quality training examples. In this paper, we propose ViCo with three novel designs to tackle the above challenges for generating engaging Video Comments. Firstly, to quantify the engagement of comments, we utilize the number of "likes" each comment receives as a proxy of human preference after an appropriate debiasing procedure. Secondly, to automatically evaluate the engagement of comments, we train a reward model to align its judgment to the above proxy. Our user studies indicate that this reward model effectively aligns with human judgments. Lastly, to alleviate the scarcity of high-quality comments, an initial generator is trained on readily available but noisy data to generate comments. Then the reward model is employed to offer feedback on the generated comments, thus optimizing the initial generator. To facilitate the research of video commenting, we collect a large video comment-dataset (ViCo-20k) with rich metadata from a popular video website. Experiments on ViCo-20k show that the comments generated by our ViCo model exhibit the best performance in terms of both quantitative and qualitative results, particularly when engagement is considered

    OFAR: A Multimodal Evidence Retrieval Framework for Illegal Live-streaming Identification

    Full text link
    Illegal live-streaming identification, which aims to help live-streaming platforms immediately recognize the illegal behaviors in the live-streaming, such as selling precious and endangered animals, plays a crucial role in purifying the network environment. Traditionally, the live-streaming platform needs to employ some professionals to manually identify the potential illegal live-streaming. Specifically, the professional needs to search for related evidence from a large-scale knowledge database for evaluating whether a given live-streaming clip contains illegal behavior, which is time-consuming and laborious. To address this issue, in this work, we propose a multimodal evidence retrieval system, named OFAR, to facilitate the illegal live-streaming identification. OFAR consists of three modules: Query Encoder, Document Encoder, and MaxSim-based Contrastive Late Intersection. Both query encoder and document encoder are implemented with the advanced OFA encoder, which is pretrained on a large-scale multimodal dataset. In the last module, we introduce contrastive learning on the basis of the MaxiSim-based late intersection, to enhance the model's ability of query-document matching. The proposed framework achieves significant improvement on our industrial dataset TaoLive, demonstrating the advances of our scheme

    CLIP-ViP: Adapting Pre-trained Image-Text Model to Video-Language Representation Alignment

    Full text link
    The pre-trained image-text models, like CLIP, have demonstrated the strong power of vision-language representation learned from a large scale of web-collected image-text data. In light of the well-learned visual features, some existing works transfer image representation to video domain and achieve good results. However, how to utilize image-language pre-trained model (e.g., CLIP) for video-language pre-training (post-pretraining) is still under explored. In this paper, we investigate two questions: 1) what are the factors hindering post-pretraining CLIP to further improve the performance on video-language tasks? and 2) how to mitigate the impact of these factors? Through a series of comparative experiments and analyses, we find that the data scale and domain gap between language sources have great impacts. Motivated by these, we propose a Omnisource Cross-modal Learning method equipped with a Video Proxy mechanism on the basis of CLIP, namely CLIP-ViP. Extensive results show that our approach improves the performance of CLIP on video-text retrieval by a large margin. Our model also achieves SOTA results on a variety of datasets, including MSR-VTT, DiDeMo, LSMDC, and ActivityNet. We will release our code and pre-trained CLIP-ViP models at https://github.com/microsoft/XPretrain/tree/main/CLIP-ViP

    Pave the Way to Grasp Anything: Transferring Foundation Models for Universal Pick-Place Robots

    Full text link
    Improving the generalization capabilities of general-purpose robotic agents has long been a significant challenge actively pursued by research communities. Existing approaches often rely on collecting large-scale real-world robotic data, such as the RT-1 dataset. However, these approaches typically suffer from low efficiency, limiting their capability in open-domain scenarios with new objects, and diverse backgrounds. In this paper, we propose a novel paradigm that effectively leverages language-grounded segmentation masks generated by state-of-the-art foundation models, to address a wide range of pick-and-place robot manipulation tasks in everyday scenarios. By integrating precise semantics and geometries conveyed from masks into our multi-view policy model, our approach can perceive accurate object poses and enable sample-efficient learning. Besides, such design facilitates effective generalization for grasping new objects with similar shapes observed during training. Our approach consists of two distinct steps. First, we introduce a series of foundation models to accurately ground natural language demands across multiple tasks. Second, we develop a Multi-modal Multi-view Policy Model that incorporates inputs such as RGB images, semantic masks, and robot proprioception states to jointly predict precise and executable robot actions. Extensive real-world experiments conducted on a Franka Emika robot arm validate the effectiveness of our proposed paradigm. Real-world demos are shown in YouTube (https://www.youtube.com/watch?v=1m9wNzfp_4E ) and Bilibili (https://www.bilibili.com/video/BV178411Z7H2/ )

    AlphaBlock: Embodied Finetuning for Vision-Language Reasoning in Robot Manipulation

    Full text link
    We propose a novel framework for learning high-level cognitive capabilities in robot manipulation tasks, such as making a smiley face using building blocks. These tasks often involve complex multi-step reasoning, presenting significant challenges due to the limited paired data connecting human instructions (e.g., making a smiley face) and robot actions (e.g., end-effector movement). Existing approaches relieve this challenge by adopting an open-loop paradigm decomposing high-level instructions into simple sub-task plans, and executing them step-by-step using low-level control models. However, these approaches are short of instant observations in multi-step reasoning, leading to sub-optimal results. To address this issue, we propose to automatically collect a cognitive robot dataset by Large Language Models (LLMs). The resulting dataset AlphaBlock consists of 35 comprehensive high-level tasks of multi-step text plans and paired observation sequences. To enable efficient data acquisition, we employ elaborated multi-round prompt designs that effectively reduce the burden of extensive human involvement. We further propose a closed-loop multi-modal embodied planning model that autoregressively generates plans by taking image observations as input. To facilitate effective learning, we leverage MiniGPT-4 with a frozen visual encoder and LLM, and finetune additional vision adapter and Q-former to enable fine-grained spatial perception for manipulation tasks. We conduct experiments to verify the superiority over existing open and closed-loop methods, and achieve a significant increase in success rate by 21.4% and 14.5% over ChatGPT and GPT-4 based robot tasks. Real-world demos are shown in https://www.youtube.com/watch?v=ayAzID1_qQk

    SINC: Self-Supervised In-Context Learning for Vision-Language Tasks

    Full text link
    Large Pre-trained Transformers exhibit an intriguing capacity for in-context learning. Without gradient updates, these models can rapidly construct new predictors from demonstrations presented in the inputs. Recent works promote this ability in the vision-language domain by incorporating visual information into large language models that can already make in-context predictions. However, these methods could inherit issues in the language domain, such as template sensitivity and hallucination. Also, the scale of these language models raises a significant demand for computations, making learning and operating these models resource-intensive. To this end, we raise a question: ``How can we enable in-context learning without relying on the intrinsic in-context ability of large language models?". To answer it, we propose a succinct and general framework, Self-supervised IN-Context learning (SINC), that introduces a meta-model to learn on self-supervised prompts consisting of tailored demonstrations. The learned models can be transferred to downstream tasks for making in-context predictions on-the-fly. Extensive experiments show that SINC outperforms gradient-based methods in various vision-language tasks under few-shot settings. Furthermore, the designs of SINC help us investigate the benefits of in-context learning across different tasks, and the analysis further reveals the essential components for the emergence of in-context learning in the vision-language domain.Comment: Accepted by ICCV 2023; Camera Ready Versio
    corecore