2,362 research outputs found

    Searching for MgII absorbers in and around galaxy clusters

    Full text link
    To study environmental effects on the circumgalactic medium (CGM), we use the samples of redMaPPer galaxy clusters, background quasars and cluster galaxies from the SDSS. With ~82 000 quasar spectra, we detect 197 MgII absorbers in and around the clusters. The detection rate per quasar is 2.7±\pm0.7 times higher inside the clusters than outside the clusters, indicating that MgII absorbers are relatively abundant in clusters. However, when considering the galaxy number density, the absorber-to-galaxy ratio is rather low inside the clusters. If we assume that MgII absorbers are mainly contributed by the CGM of massive star-forming galaxies, a typical halo size of cluster galaxies is smaller than that of field galaxies by 30±\pm10 per cent. This finding supports that galaxy haloes can be truncated by interaction with the host cluster.Comment: 11 pages, 12 figures. To appear in MNRA

    Understanding the Formation and Evolution of Dark Galaxies in a Simulated Universe

    Full text link
    We study the formation and evolution of dark galaxies using the IllustrisTNG cosmological hydrodynamical simulation. We first identify dark galaxies with stellar-to-total mass ratios, M/MtotM_* / M_{\text{tot}}, smaller than 10410^{-4}, which differ from luminous galaxies with M/Mtot104M_* / M_{\text{tot}} \geq 10^{-4}. We then select the galaxies with dark matter halo mass of 109h1\sim 10^9 \, h^{-1}M\rm M_{\odot} for mass completeness, and compare their physical properties with those of luminous galaxies. We find that at the present epoch (z=0z=0), dark galaxies are predominantly located in void regions without star-forming gas. We also find that dark galaxies tend to have larger sizes and higher spin parameters than luminous galaxies. In the early universe, dark and luminous galaxies show small differences in the distributions of spin and local environment estimates, and the difference between the two samples becomes more significant as they evolve. Our results suggest that dark galaxies tend to be initially formed in less dense regions, and could not form stars because of heating from cosmic reionization and of few interactions and mergers with other systems containing stars unlike luminous galaxies. This study based on numerical simulations can provide important hints for validating dark galaxy candidates in observations and for constraining galaxy formation models.Comment: 15 pages, 10 figures, accepted for publication in Ap

    Peccei-Quinn Inflation at the Pole and Axion Kinetic Misalignment

    Full text link
    We propose a minimal extension of the Standard Model with the Peccei-Quinn (PQ) scalar field and explain the relic density of the QCD axion through the kinetic misalignment with a relatively small axion decay constant. To this purpose, we consider a slow-roll inflation from the radial component of the PQ field with the PQ conserving potential near the pole of its kinetic term and investigate the post-inflationary dynamics of the PQ field for reheating. The angular mode of the PQ field, identified with the QCD axion, receives a nonzero velocity during inflation due to the PQ violating potential, evolving with an approximately conserved Noether PQ charge. We determine the reheating temperature from the perturbative decays and scattering processes of the inflaton and obtain dark radiation from the axions produced from the inflaton scattering at a testable level in the future Cosmic Microwave Background experiments. We show the correlation between the reheating temperature, the initial velocity of the axion and the axion decay constant, realizing the axion kinetic misalignment for the correct relic density.Comment: 25 pagesm 3 figure

    Increasing the Durability of Piezoelectric Impact-based Micro Wind Generator in Real Application

    Get PDF
    AbstractThe purpose of this study is to increase the durability of piezoelectric impact-based micro wind generator (PIMWG) in real application. Using new PIMWG design, numerical simulation, and experimental comparison analysis, we improved the durability of PIMWGs in real application. The experimental results show that the optimized PIMWG generated 2.4 mW (RMS value), and it did not crack within 40h. In this study, we improved the durability of PIMWGs for real application

    Possible link between Arctic Sea ice and January PM10 concentrations in South Korea

    Get PDF
    In this study, we investigated the possible teleconnection between PM10 concentrations in South Korea and Arctic Sea ice concentrations at inter-annual time scales using observed PM10 data from South Korea, NCEP R2 data, and NOAA Sea Ice Concentration (SIC) data from 2001 to 2018. From the empirical orthogonal function (EOF) analysis, we found that the first mode (TC1) was a large-scale mode for PM10 in South Korea and explained about 27.4% of the total variability. Interestingly, the TC1 is more dominantly influenced by the horizontal ventilation effect than the vertical atmospheric stability effect. The pollution potential index (PPI), which is defined by the weighted average of the two ventilation effects, is highly correlated with the TC1 of PM10 at a correlation coefficient of 0.75, indicating that the PPI is a good measure for PM10 in South Korea at inter-annual time scales. Regression maps show that the decrease of SIC over the Barents Sea is significantly correlated with weakening of high pressure over the Ural mountain range region, the anomalous high pressure at 500 hPa over the Korean peninsula, and the weakening of the Siberian High and Aleutian low. Moreover, these patterns are similar to the correlation pattern with the PPI, suggesting that the variability of SIC over the Barents Sea may play an important role in modulating the variability of PM10 in South Korea through teleconnection from the Barents Sea to the Korean peninsula via Eurasia
    corecore