474 research outputs found

    From exotic phases to microscopic Hamiltonians

    Full text link
    We report recent analytical progress in the quest for spin models realising exotic phases. We focus on the question of `reverse-engineering' a local, SU(2) invariant S=1/2 Hamiltonian to exhibit phases predicted on the basis of effective models, such as large-N or quantum dimer models. This aim is to provide a point-of-principle demonstration of the possibility of constructing such microscopic lattice Hamiltonians, as well as to complement and guide numerical (and experimental) approaches to the same question. In particular, we demonstrate how to utilise peturbed Klein Hamiltonians to generate effective quantum dimer models. These models use local multi-spin interactions and, to obtain a controlled theory, a decoration procedure involving the insertion of Majumdar-Ghosh chainlets on the bonds of the lattice. The phases we thus realise include deconfined resonating valence bond liquids, a devil's staircase of interleaved phases which exhibits Cantor deconfinement, as well as a three-dimensional U(1) liquid phase exhibiting photonic excitations.Comment: Invited talk at Peyresq Workshop on "Effective models for low-dimensional strongly correlated systems". Proceedings to be published by AIP. v2: references adde

    Quantum Hall Skyrmions with Higher Topological Charge

    Full text link
    We have investigated quantum Hall skyrmions at filling factor \nu=1 carrying more than one unit of topological, and hence electric, charge. Using a combination of analytic and numerical methods we find the counterintuitive result that when the Zeeman energy is tuned to values much smaller than the interaction energy (g \mu_B B/(e^2/\epsilon\ell) < 9*10^{-5}),the creation energy of a charge two skyrmion becomes less than twice the creation energy of a charge one skyrmion, i.e. skyrmions bind in pairs. The doubly charged skyrmions are stable to further accretion of charge and exhibit a 10% larger spin per unit charge than charge one skyrmions which would, in principle, signal this pairing.Comment: 4 pages, 3 figures. Submitted to Phys. Rev. B, Rapid Communication

    Nature of the spin liquid state of the Hubbard model on honeycomb lattice

    Full text link
    Recent numerical work (Nature 464, 847 (2010)) indicates the existence of a spin liquid phase (SL) that intervenes between the antiferromagnetic and semimetallic phases of the half filled Hubbard model on a honeycomb lattice. To better understand the nature of this exotic phase, we study the quantum J1−J2J_1-J_2 spin model on the honeycomb lattice, which provides an effective description of the Mott insulating region of the Hubbard model. Employing the variational Monte Carlo approach, we analyze the phase diagram of the model, finding a phase transition between antiferromagnet and an unusual Z2Z_2 SL state at J2/J1≈0.08J_2/J_1\approx 0.08, which we identify as the SL phase of the Hubbard model. At higher J2/J1≳0.3J_2/J_1\gtrsim 0.3 we find a transition to a dimerized state with spontaneously broken rotational symmetry.Comment: 5 pages, 6 figure

    Diagnosing Deconfinement and Topological Order

    Full text link
    Topological or deconfined phases are characterized by emergent, weakly fluctuating, gauge fields. In condensed matter settings they inevitably come coupled to excitations that carry the corresponding gauge charges which invalidate the standard diagnostic of deconfinement---the Wilson loop. Inspired by a mapping between symmetric sponges and the deconfined phase of the Z2Z_2 gauge theory, we construct a diagnostic for deconfinement that has the interpretation of a line tension. One operator version of this diagnostic turns out to be the Fredenhagen-Marcu order parameter known to lattice gauge theorists and we show that a different version is best suited to condensed matter systems. We discuss generalizations of the diagnostic, use it to establish the existence of finite temperature topological phases in d≥3d \ge 3 dimensions and show that multiplets of the diagnostic are useful in settings with multiple phases such as U(1)U(1) gauge theories with charge qq matter. [Additionally we present an exact reduction of the partition function of the toric code in general dimensions to a well studied problem.]Comment: 11 pages, several figure

    Dipolar spin correlations in classical pyrochlore magnets

    Full text link
    We study spin correlations for the highly frustrated classical pyrochlore lattice antiferromagnets with O(N) symmetry in the limit T->0. We conjecture that a local constraint obeyed by the extensively degenerate ground states dictates a dipolar form for the asymptotic spin correlations, at all N ≠\ne 2 for which the system is paramagnetic down to T=0. We verify this conjecture in the cases N=1 and N=3 by simulations and to all orders in the 1/N expansion about the solvable N=infinity limit. Remarkably, the N=infinity formulae are an excellent fit, at all distances, to the correlators at N=3 and even at N=1. Thus we obtain a simple analytical expression also for the correlations of the equivalent models of spin ice and cubic water ice, I_h.Comment: 4 pages revtex

    Skyrmions in Higher Landau Levels

    Full text link
    We calculate the energies of quasiparticles with large numbers of reversed spins (``skyrmions'') for odd integer filling factors 2k+1, k is greater than or equals 1. We find, in contrast with the known result for filling factor equals 1 (k = 0), that these quasiparticles always have higher energy than the fully polarized ones and hence are not the low energy charged excitations, even at small Zeeman energies. It follows that skyrmions are the relevant quasiparticles only at filling factors 1, 1/3 and 1/5.Comment: 10 pages, RevTe

    Biot-Savart correlations in layered superconductors

    Full text link
    We discuss the superconductor to normal phase transition in an infinite-layered type-II superconductor in the limit where the Josephson coupling between layers is negligible. We model each layer as a neutral gas of thermally excited pancake vortices. We assume the dominant interaction between vortices in the same and in different layers is the electromagnetic interaction between the screening currents induced by these vortices. Our main result, obtained by exactly solving the leading order renormalization group flow, is that the phase transition in this model is a Kosterlitz--Thouless transition despite being a three--dimensional system. While the transition itself is driven by the unbinding of two-dimensional pancake vortices, an RG analysis of the low temperature phase and a mean-field theory of the high temperature phase reveal that both phases possess three-dimensional correlations. An experimental consequence of this is that the jump in the measured in-plane superfluid stiffness, which is a universal quantity in 2d Kosterlitz-Thouless theory, will receive a small non--universal correction (of order 1% in Bi2_2Sr2_2CaCu2_2O8+x_{8+x}). This overall picture places some claims expressed in the literature on a more secure analytical footing and also resolves some conflicting views.Comment: 16 pages, 2 figures; minor typos corrected, references adde

    Supersymmetric Model of Spin-1/2 Fermions on a Chain

    Full text link
    In recent work, N=2 supersymmetry has been proposed as a tool for the analysis of itinerant, correlated fermions on a lattice. In this paper we extend these considerations to the case of lattice fermions with spin 1/2 . We introduce a model for correlated spin-1/2 fermions with a manifest N=4 supersymmetry, and analyze its properties. The supersymmetric ground states that we find represent holes in an anti-ferromagnetic background.Comment: 15 pages, 10 eps figure

    SU(2)-invariant spin-1/2 Hamiltonians with RVB and other valence bond phases

    Full text link
    We construct a family of rotationally invariant, local, S=1/2 Klein Hamiltonians on various lattices that exhibit ground state manifolds spanned by nearest-neighbor valence bond states. We show that with selected perturbations such models can be driven into phases modeled by well understood quantum dimer models on the corresponding lattices. Specifically, we show that the perturbation procedure is arbitrarily well controlled by a new parameter which is the extent of decoration of the reference lattice. This strategy leads to Hamiltonians that exhibit i) Z2Z_2 RVB phases in two dimensions, ii) U(1) RVB phases with a gapless ``photon'' in three dimensions, and iii) a Cantor deconfined region in two dimensions. We also construct two models on the pyrochlore lattice, one model exhibiting a Z2Z_2 RVB phase and the other a U(1) RVB phase.Comment: 16 pages, 15 figures; 1 figure and some references added; some minor typos fixe

    Many skyrmion wave functions and skyrmion statistics in quantum Hall ferromagnets

    Full text link
    We determine the charge and statistical angle of skyrmions in quantum Hall ferromagnets by performing Berry phase calculations based on the microscopic variational wave functions for many-skyrmion states. We find, in contradiction to a recent claim by Dziarmaga, that both the charge and the statistical angle of a skyrmion are independent of its spin (size), and are identical to those of Laughlin quasiparticles at the same filling factor. We discuss some subtleties in the use of these variational wave functions.Comment: 11 pages, RevTex, no figure. Accepted in Phys. Rev. B, Rapid Communication
    • …
    corecore