30 research outputs found
A large multi-country outbreak of monkeypox across 41 countries in the WHO European Region, 7 March to 23 August 2022
Following the report of a non-travel-associated cluster of monkeypox cases by the United Kingdom in May 2022, 41 countries across the WHO European Region have reported 21,098 cases and two deaths by 23 August 2022. Nowcasting suggests a plateauing in case notifications. Most cases (97%) are MSM, with atypical rash-illness presentation. Spread is mainly through close contact during sexual activities. Few cases are reported among women and children. Targeted interventions of at-risk groups are needed to stop further transmission. © 2022 European Centre for Disease Prevention and Control (ECDC). All rights reserved.The authors affiliated with the World Health Organization (WHO) are alone responsible for the views expressed in this publication and they do not necessarily represent the decisions or policies of the WHO. The co-author is a fellow of the ECDC Fellowship Programme, supported financially by the European Centre for Disease Prevention and Control (ECDC). The views and opinions expressed herein do not state or reflect those of ECDC. ECDC is not responsible for the data and information collation and analysis and cannot be held liable for conclusions or opinions drawn
Call the on-Call: Authentic Team Training on an Interprofessional Training Ward – A Case Study
Lana Zelić,1 Klara Bolander Laksov,2 Eva SamnegĂ„rd,1 Josefine Ivarson,3 Anders SondĂ©n1 1Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; 2Department of Education, Stockholm University, Stockholm, Sweden; 3Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, SwedenCorrespondence: Lana Zelić, Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Alfred Nobels allĂ© 23, 141 52, Huddinge, Stockholm, Sweden, Tel +46 708777459, Email [email protected]: There is a disconnect between how healthcare teams commonly are trained and how they act in reality. The purpose with this paper was to present a learning activity that prepares healthcare students to authentic teamwork where team members are fluent and move between different localities, and to explore how this setting affects learning.Methods: A learning activity âCall the On-Callâ consisting of two elements, workplace team training where team members are separated into different locations, and a telephone communication exercise, was created. A case study approach using mixed methods was adopted to explore medical-, nurse-, physiotherapy- and occupational therapy students and supervisor perspectives of the effects of the learning activity. Data collection involved surveys, notes from reflection sessions, a focus group interview, and field observations. Thematic analysis was applied for qualitative data and descriptive statistics for quantitative data. The sociocultural learning theory, social capital theory, was used to conceptualize and analyse the findings.Results: The majority of the students (n=198) perceived that the learning activity developed their interprofessional and professional competence, but to a varying degree. Especially nursing students found value in the learning activity, above all due to increased confidence in calling a doctor. Physio- and occupational therapy students lacked the opportunity to be active during the telephone exercise, however, they described how it increased their interprofessional competence. Authenticity was highlighted as the key strength of the learning activity from all professions. Concerns that team building would suffer as a result of splitting the student team proved unfounded.Conclusion: The learning activity created new opportunities for students to reflect on interprofessional collaboration. Constant physical proximity during training is not essential for effective healthcare team building. Splitting the student team during training may in fact enhance interprofessional learning and lead to progression in interprofessional communication.Keywords: interprofessional training, interprofessional communication, learning activity, authentic teamwork, social capital theor
Antibody responses to merozoite antigens after natural Plasmodium falciparum infection: kinetics and longevity in absence of re-exposure
Background Antibodies against merozoite antigens are key components of malaria immunity. The naturally acquired antibody response to these antigens is generally considered short-lived; however, the underlying mechanisms remain unclear. Prospective studies of travellers with different levels of prior exposure, returning to malaria-free countries with Plasmodium infection, offer a unique opportunity to investigate the kinetics and composition of the antibody response after natural infection. Methods Adults diagnosed with P. falciparum malaria in Stockholm, Sweden (20 likely malaria naĂŻve and 41 with repeated previous exposure during residency in sub-Saharan Africa) were sampled at diagnosis and 10âdays and 1, 3, 6, and 12âmonths after treatment. Total and subclass-specific IgG responses to P. falciparum merozoite antigens (AMA-1, MSP-119, MSP-2, MSP-3, and RH5) and tetanus toxoid were measured by multiplex bead-based immunoassays and ELISA. Mathematical modelling was used to estimate the exposure-dependent longevity of antibodies and antibody-secreting cells (ASCs). Results A majority of individuals mounted detectable antibody responses towards P. falciparum merozoite antigens at diagnosis; however, the magnitude and breadth were greater in individuals with prior exposure. In both exposure groups, antibody levels increased rapidly for 2 weeks and decayed thereafter. Previously exposed individuals maintained two- to ninefold greater antibody levels throughout the 1-year follow-up. The half-lives of malaria-specific long-lived ASCs, responsible for maintaining circulating antibodies, ranged from 1.8 to 3.7âyears for merozoite antigens and were considerably short compared to tetanus-specific ASCs. Primary infected individuals did acquire a long-lived component of the antibody response; however, the total proportion of long-lived ASCs generated in response to infection was estimated not to exceed 10%. In contrast, previously exposed individuals maintained substantially larger numbers of long-lived ASCs (10â56% of total ASCs). Conclusion The short-lived nature of the naturally acquired antibody response, to all tested merozoite antigens, following primary malaria infection can be attributed to a combination of a poor acquisition and short half-life of long-lived ASCs. Greater longevity is acquired with repeated infections and can be explained by the maintenance of larger numbers of long-lived ASCs. These insights advance our understanding of naturally acquired malaria immunity and will guide strategies for further development of both vaccines and serological tools to monitor exposure.</p
Targets and Mechanisms Associated with Protection from Severe Plasmodium falciparum Malaria in Kenyan Children
Severe malaria (SM) is a life-threatening complication of infection with Plasmodium falciparum. Epidemiological observations have long indicated that immunity against SM is acquired relatively rapidly, but prospective studies to investigate its immunological basis are logistically challenging and have rarely been undertaken. We investigated the merozoite targets and antibody-mediated mechanisms associated with protection against SM in Kenyan children aged 0 to 2 years. We designed a unique prospective matched case-control study of well-characterized SM clinical phenotypes nested within a longitudinal birth cohort of children (n = 5,949) monitored over the first 2 years of life. We quantified immunological parameters in sera collected before the SM event in cases and their individually matched controls to evaluate the prospective odds of developing SM in the first 2 years of life. Anti-AMA1 antibodies were associated with a significant reduction in the odds of developing SM (odds ratio [OR] = 0.37; 95% confidence interval [CI] = 0.15 to 0.90; P = 0.029) after adjustment for responses to all other merozoite antigens tested, while those against MSP-2, MSP-3, Plasmodium falciparum Rh2 [PfRh2], MSP-119, and the infected red blood cell surface antigens were not. The combined ability of total IgG to inhibit parasite growth and mediate the release of reactive oxygen species from neutrophils was associated with a marked reduction in the odds of developing SM (OR = 0.07; 95% CI = 0.006 to 0.82; P = 0.03). Assays of these two functional mechanisms were poorly correlated (Spearman rank correlation coefficient [rs] = 0.12; P = 0.07). Our data provide epidemiological evidence that multiple antibody-dependent mechanisms contribute to protective immunity via distinct targets whose identification could accelerate the development of vaccines to protect against SM
Cord blood IgG and the risk of severe Plasmodium falciparum malaria in the first year of life.
Young infants are less susceptible to severe episodes of malaria but the targets and mechanisms of protection are not clear. Cord blood antibodies may play an important role in mediating protection but many studies have examined their association with the outcome of infection or non-severe malaria. Here, we investigated whether cord blood IgG to Plasmodium falciparum merozoite antigens and antibody-mediated effector functions were associated with reduced odds of developing severe malaria at different time points during the first year of life. We conducted a case-control study of well-defined severe falciparum malaria nested within a longitudinal birth cohort of Kenyan children. We measured cord blood total IgG levels against five recombinant merozoite antigens and antibody function in the growth inhibition activity and neutrophil antibody-dependent respiratory burst assays. We also assessed the decay of maternal antibodies during the first 6months of life. The mean antibody half-life range was 2.51months (95% confidence interval (CI): 2.19-2.92) to 4.91months (95% CI: 4.47-6.07). The rate of decline of maternal antibodies was inversely proportional to the starting concentration. The functional assay of antibody-dependent respiratory burst activity predicted significantly reduced odds of developing severe malaria during the first 6months of life (Odds ratio (OR) 0.07, 95% CI: 0.007-0.74, P=0.007). Identification of the targets of antibodies mediating antibody-dependent respiratory burst activity could contribute to the development of malaria vaccines that protect against severe episodes of malaria in early infancy
Severe Plasmodium falciparum malaria: targets and mechanisms associated with protection in Kenyan children.
Severe malaria (SM) is a life-threatening complication of infection with Plasmodium falciparum. Epidemiological observations have long indicated that immunity against SM is acquired relatively rapidly, but prospective studies to investigate its immunological basis are logistically challenging and have rarely been undertaken. We investigated the merozoite targets and antibody-mediated mechanisms associated with protection against SM in Kenyan children aged 0 to 2 years. We designed a unique prospective matched case-control study of well-characterized SM clinical phenotypes nested within a longitudinal birth cohort of children (n = 5,949) monitored over the first 2 years of life. We quantified immunological parameters in sera collected before the SM event in cases and their individually matched controls to evaluate the prospective odds of developing SM in the first 2 years of life. Anti-AMA1 antibodies were associated with a significant reduction in the odds of developing SM (odds ratio [OR] = 0.37; 95% confidence interval [CI] = 0.15 to 0.90; P = 0.029) after adjustment for responses to all other merozoite antigens tested, while those against MSP-2, MSP-3, Plasmodium falciparum Rh2 [PfRh2], MSP-119, and the infected red blood cell surface antigens were not. The combined ability of total IgG to inhibit parasite growth and mediate the release of reactive oxygen species from neutrophils was associated with a marked reduction in the odds of developing SM (OR = 0.07; 95% CI = 0.006 to 0.82; P = 0.03). Assays of these two functional mechanisms were poorly correlated (Spearman rank correlation coefficient [rs] = 0.12; P = 0.07). Our data provide epidemiological evidence that multiple antibody-dependent mechanisms contribute to protective immunity via distinct targets whose identification could accelerate the development of vaccines to protect against SM
Memory B-cell responses against merozoite antigens after acute Plasmodium falciparum malaria, assessed over one year using a novel multiplexed fluorospot assay
Memory B cells (MBCs) are believed to be important for the maintenance of immunity to malaria, and these cells need to be explored in the context of different parasite antigens and their breadth and kinetics after natural infections. However, frequencies of antigen-specific MBCs are low in peripheral blood, limiting the number of antigens that can be studied, especially when small blood volumes are available. Here, we developed a multiplexed reversed B-cell FluoroSpot assay capable of simultaneously detecting MBCs specific for the four Plasmodium falciparum blood-stage antigens, MSP-119, MSP-2, MSP-3 and AMA-1. We used the assay to study the kinetics of the MBC response after an acute episode of malaria and up to one year following treatment in travelers returning to Sweden from sub-Saharan Africa. We show that the FluoroSpot assay can detect MBCs to all four merozoite antigens in the same well, and that the breadth and kinetics varied between individuals. We further found that individuals experiencing a primary infection could mount and maintain parasite-specific MBCs to a similar extent as previously exposed adults, already after a single infection. We conclude that the multiplexed B-cell FluoroSpot is a powerful tool for assessing antigen-specific MBC responses to several antigens simultaneously, and that the kinetics of MBC responses against merozoite surface antigens differ over the course of one year. These findings contribute to the understanding of acquisition and maintenance of immune responses to malaria