365 research outputs found

    TASTE ABATEMENT AND CHARACTERIZATION OF DISPERSIBLE TABLETS OF ARTEMETHER PREPARED BY HOT MELT EXTRUSION

    Get PDF
    Objective: The aim of this study was to formulate and evaluate a taste-masked formulation using hot melt extrusion approach for artemether.Methods: Taste masking of artemether was done by preparing solid dispersion with coating polymer kollicoatsmartseal 30D using hot melt extrusion. The prepared solid dispersion was subjected to taste masking evaluation like sensory evaluation parameters against five levels set for taste evaluation using artemether as control standard along with in vitro release studies in simulated salivery fluid. After taste evaluation of solid dispersion was subjected to the formulation of dispersible tablets by direct compression method. The final taste masking evaluation of dispersible tablets of solid dispersion containing artemether were done by a sensory evaluation panel of nine members along with in vitro release study in simulated salivary and gastric fluid.Results: The percent drug content was found 35.09±0.06 % in solid dispersion. The drug excipients compatibility studies performed with the help of FTIR instrument and DSC that indicates there were no interactions between drug and polymers. Solid dispersions (1:1, 1:2, 1:3 drug polymer ratio) of artemether were evaluated by sensory evaluation panel from which 1:3 drug: polymer solid dispersion was found more palatable. Release rate study in simulated salivary fluid shown no release but shows release of drug in simulated gastric fluids which indicates that the drug was taste masked. The optimized batch of dispersible tablets (F1) were subjected for evaluation parameters like dispersion time (70±1.90), wetting time (63±1.86), etc. Dissolution studies of optimized formulation indicated that the polymer does not allow drug to release in simulated salivery pH 6.8 but shows immediate release in simulated gastric pH which also confirms taste masking efficiency of polymer. Final optimized F1 batch evaluated for taste masking evaluation by sensory evaluation panel using pure drug as control standard found to be palatable.Conclusion: It may be concluded that kollicoatsmartseal 30D could mask the taste of the drug in salivary pH and shows drug release at gastric pH which confirms its efficiency for taste masking

    Support Vector Machines for Human Face Detection: A Review

    Get PDF
    The computer vision drawback of face detection has over the years become a standard high-requirements benchmark for machine learning ways. Within the last decade, extremely efficient face detection systems are developed that extensively use the character of the image domain to attain correct time period performance. However, the effectiveness of such systems wouldn't be potential while not the progress within the underlying machine learning and classification ways. Now the research area of face recognition technology is much advanced because the research in this area has been conducted for more than 30 years. The main reason for the popularity of face recognition is that it can be used in the different fields like identity authentication, access control and so on. Support vector machine learning may be a comparatively recent methodology that gives a decent generalization performance. Like alternative ways, SVM learning has been applied to the task of face detection, wherever the drawbacks of the technique became evident. Analysis that specializes in accuracy found that competitive performance is feasible however training on adequately giant datasets is difficult. Others tackled the speed issue and whereas varied approximation ways created interactive response times potential, those usually came at a worth of reduced accuracy

    Association between mean platelet volume levels and inflammation in SLE patients presented with arthritis

    Get PDF
    Background: Systemic lupus erythematosus (SLE) may be characterized by periods of remissions and chronic or acute relapses. The complexity of clinical presentation of the SLE patients leads to incorrect evaluation of disease activity. Mean platelet volume (MPV) has been studied as a simple inflammatory marker in several diseases. There is no study in the literature about MPV levels in adult SLE patients with arthritis.Objectives: We aimed to investigate the MPV levels in the SLE population with arthritis during and between activations.Methods: The study consisted of 44 SLE patients with arthritis in activation period (Group 1), the same 44 SLE patients with arthritis in remission period (Group 2) and 44 healthy controls (Group 3). Erythrocyte sedimentation rate (ESR), creactive protein (CRP), white blood cell count, platelet count, and mean platelet volume (MPV) levels were retrospectively recorded from patient files.Results: The mean ages of the SLE subjects were 42 ± 16 years, while the mean ages of controls was 41 ± 17 years. MPV was significantly lower in Group 1(7.66±0.89fL) than in Group 2 (8.61±1.06 fL) and Group 3(8.62±1.11fL) (p<0.0001). The differences between groups reached statistical significance.Conclusions: We suggest that MPV levels decrease in patients with arthritis of SLE activation when compared to the same patients in remission and healthy controls.Key words: Systemic lupus erythematosus, Arthritis, Mean platelet volum

    Characterisation of the structure and oligomerisation of islet amyloid polypeptides (IAPP): A review of molecular dynamics simulation studies

    Get PDF
    Human islet amyloid polypeptide (hIAPP) is a naturally occurring, intrinsically disordered protein whose abnormal aggregation into amyloid fibrils is a pathological feature in type 2 diabetes, and its cross-aggregation with amyloid beta has been linked to an increased risk of Alzheimer’s disease. The soluble, oligomeric forms of hIAPP are the most toxic to ß-cells in the pancreas. However, the structure of these oligomeric forms is difficult to characterise because of their intrinsic disorder and their tendency to rapidly aggregate into insoluble fibrils. Experimental studies of hIAPP have generally used non-physiological conditions to prevent aggregation, and they have been unable to describe its soluble monomeric and oligomeric structure at physiological conditions. Molecular dynamics (MD) simulations offer an alternative for the detailed characterisation of the monomeric structure of hIAPP and its aggregation in aqueous solution. This paper reviews the knowledge that has been gained by the use of MD simulations, and its relationship to experimental data for both hIAPP and rat IAPP. In particular, the influence of the choice of force field and water models, the choice of initial structure, and the configurational sampling method used, are discussed in detail. Characterisation of the solution structure of hIAPP and its mechanism of oligomerisation is important to understanding its cellular toxicity and its role in disease states, and may ultimately offer new opportunities for therapeutic interventions

    Everything you Want to Know and Never Dared to ask:A Practical Approach to Employing Challenge-Based Learning in Engineering Ethics

    Get PDF
    Challenge-based learning (CBL) for engineering ethics tasks students with identifying ethical challenges in cooperation with an external partner, e.g., a technology company. As many best-practice parameters of such courses remain unclear, this contribution focuses on a teacher-centric introduction into deploying CBL for engineering ethics. Taking Goodlad's curriculum typology as a point of departure, we discuss practical issues in devising, maintaining and evaluating CBL courses for engineering ethics both in terms of the temporal dimension (before, during and after the course) as well as in terms of the people involved. We will discuss selecting learning objectives, forms of knowledge acquisition, supporting self-organization, and fostering discursive etiquette, as well as cooperative, yet critical attitudes. Additionally, we will delve into strategic matters, e.g., ways to approach potential external partners and maintain fruitful cooperations.</p

    Formulation and Evaluation of Liquid Filled Hard Gelatin Capsule of Febuxostat

    Get PDF
    Liquid filled hard gelatin capsule are well recognized as a solid dosage form for convenient administration of drugs orally in a liquid form. This liquid composition available help the most challenging drug compounds in capsules has increased significantly in recent years. The drugs which have low solubility, poor bioavailability, low melting point, critical stability are the perfect candidate for liquid filling in capsule. The current study presents the formulation aspects, filling and sealing aspects of capsule, evaluation parameters of the liquid filled hard gelatin capsule using Febuxostat as drug, oils (Arachis oil, Coconut oil, Olive oil) as solvents, Glyceryl monostearate as solubilizing agent, Butylated hydroxy toluene as antioxidant, Methyl paraben &amp; Propyl paraben as preservatives. A capsule formed F3 formulation shows maximum drug release and drug content among all the formulations. Keywords: Liquid filled hard gelatin capsule, Febuxostat, Arachis oil, Coconut oil, Olive oil, Glyceryl monostearate, Butylated hydroxy toluene, Methyl paraben, Propyl paraben

    Asymptotic adaptive methods for multi-scale problems in fluid mechanics

    Get PDF
    This paper reports on the results of a three-year research effort aimed at investigating and exploiting the role of physically motivated asymptotic analysis in the design of numerical methods for singular limit problems in fluid mechanics. Such problems naturally arise, among others, in combustion, magneto-hydrodynamics and geophysical fluid mechanics. Typically, they are characterized by multiple space and/or time scales and by the disturbing fact that standard computational techniques fail entirely, are unacceptably expensive, or both. The challenge here is to construct numerical methods which are robust, uniformly accurate, and efficient through different asymptotic regimes and over a wide range of relevant applications. Summaries of multiple scales asymptotic analyses for low Mach number flows, magnetohydrodynamics at small Mach and Alfv´en numbers, and of multiple scales atmospheric flows are provided. These reveal singular balances between selected terms in the respective governing equations within the considered flow regimes. These singularities give rise to problems of severe stiffness, stability, or to dynamic range issues in straightforward numerical discretizations. Aformal mathematical framework for the multiple scales asymptotics is then summarized using the example of multiple length scale – single time scale asymptotics for low Mach number flows. The remainder of the paper focuses on the construction of numerical discretizations for the respective full governing equation systems. These discretizations avoid the pitfalls of singular balances by exploiting the asymptotic results. Importantly, the asymptotics are not used here to derive simplified equation systems, which are then solved numerically. Rather, we aim at numerically integrating the full equation sets and at using the asymptotics only to construct discretizations that do not deteriorate as a singular limit is approached. One important ingredient of this strategy is the numerical identification of a singular limit regime given a set of discrete numerical state variables. This problem is addressed in an exemplary fashion for multiple length – single time scale low Mach number flows in one space dimension. The strategy allows a dynamic determination of an instantaneous relevant Mach number, and it can thus be used to drive the appropriate adjustment of the numerical discretizations when the singular limit regime is approached
    corecore