9 research outputs found

    Configuration-Dependent Medium-Sized Ring Formation: Chiral Molecular Framework with Three-Dimensional Architecture

    Get PDF
    This report describes a configuration-dependent [6 + 8 + 5] fused ring formation via a tandem cyclic N-acyliminium nucleophilic addition reaction. Cyclization of the acyclic precursor prepared on a solid phase using l-Ser and a racemic mixture of Fmoc-trans-2-aminocyclohexanecarboxylic acid predominantly yielded the cyclic diastereomer with the (1R,2R)-2-aminocyclohexane moiety rather than the tricyclic diastereomer from the (1S,2S)-enantiomer. In contrast, the model compound prepared with d-Ser predominantly cyclized with the (1S,2S)-2-aminocyclohexanecarboxylic acid substrate. The outcome of the cyclization was not influenced by the type of resin, the spacer, or the N-substituent. The analogous synthesis of the [6 + 7 + 5] fused ring system yielded inseparable diastereomers in a 1:0.6 ratio.Fil: Cankarova, Nadezda. Palacky University; RepĂșblica ChecaFil: la Venia, Agustina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Rosario. Instituto de QuĂ­mica Rosario. Universidad Nacional de Rosario. Facultad de Ciencias BioquĂ­micas y FarmacĂ©uticas. Instituto de QuĂ­mica Rosario; ArgentinaFil: Krajcovicova, Sona. Palacky University; RepĂșblica ChecaFil: Krchnak, Viktor. Palacky University; RepĂșblica Chec

    [68Ga]Ga-DFO-c(RGDyK): Synthesis and Evaluation of Its Potential for Tumor Imaging in Mice

    No full text
    Angiogenesis has a pivotal role in tumor growth and the metastatic process. Molecular imaging was shown to be useful for imaging of tumor-induced angiogenesis. A great variety of radiolabeled peptides have been developed to target αvÎČ3 integrin, a target structure involved in the tumor-induced angiogenic process. The presented study aimed to synthesize deferoxamine (DFO)-based c(RGD) peptide conjugate for radiolabeling with gallium-68 and perform its basic preclinical characterization including testing of its tumor-imaging potential. DFO-c(RGDyK) was labeled with gallium-68 with high radiochemical purity. In vitro characterization including stability, partition coefficient, protein binding determination, tumor cell uptake assays, and ex vivo biodistribution as well as PET/CT imaging was performed. [68Ga]Ga-DFO-c(RGDyK) showed hydrophilic properties, high stability in PBS and human serum, and specific uptake in U-87 MG and M21 tumor cell lines in vitro and in vivo. We have shown here that [68Ga]Ga-DFO-c(RGDyK) can be used for αvÎČ3 integrin targeting, allowing imaging of tumor-induced angiogenesis by positron emission tomography
    corecore