16,255 research outputs found

    Quantifying Shannon's Work Function for Cryptanalytic Attacks

    Full text link
    Attacks on cryptographic systems are limited by the available computational resources. A theoretical understanding of these resource limitations is needed to evaluate the security of cryptographic primitives and procedures. This study uses an Attacker versus Environment game formalism based on computability logic to quantify Shannon's work function and evaluate resource use in cryptanalysis. A simple cost function is defined which allows to quantify a wide range of theoretical and real computational resources. With this approach the use of custom hardware, e.g., FPGA boards, in cryptanalysis can be analyzed. Applied to real cryptanalytic problems, it raises, for instance, the expectation that the computer time needed to break some simple 90 bit strong cryptographic primitives might theoretically be less than two years.Comment: 19 page

    Quantifying Resource Use in Computations

    Get PDF
    It is currently not possible to quantify the resources needed to perform a computation. As a consequence, it is not possible to reliably evaluate the hardware resources needed for the application of algorithms or the running of programs. This is apparent in both computer science, for instance, in cryptanalysis, and in neuroscience, for instance, comparative neuro-anatomy. A System versus Environment game formalism is proposed based on Computability Logic that allows to define a computational work function that describes the theoretical and physical resources needed to perform any purely algorithmic computation. Within this formalism, the cost of a computation is defined as the sum of information storage over the steps of the computation. The size of the computational device, eg, the action table of a Universal Turing Machine, the number of transistors in silicon, or the number and complexity of synapses in a neural net, is explicitly included in the computational cost. The proposed cost function leads in a natural way to known computational trade-offs and can be used to estimate the computational capacity of real silicon hardware and neural nets. The theory is applied to a historical case of 56 bit DES key recovery, as an example of application to cryptanalysis. Furthermore, the relative computational capacities of human brain neurons and the C. elegans nervous system are estimated as an example of application to neural nets.Comment: 26 pages, no figure

    Infrared Hall conductivity of Na0.7_{0.7}CoO2_2

    Full text link
    We report infrared Hall conductivity σxy(ω)\sigma_{xy}(\omega) of Na0.7_{0.7}CoO2_2 thin films determined from Faraday rotation angle θF\theta_{F} measurements. σxy(ω)\sigma_{xy}(\omega) exhibits two types of hole conduction, Drude and incoherent carriers. The coherent Drude carrier shows a large renormalized mass and Fermi liquid-like behavior of Hall scattering rate, γH∼aT2\gamma_{H} \sim aT^{2}. The spectral weight is suppressed and disappears at T = 120K. The incoherent carrier response is centered at mid-IR frequency and shifts to lower energy with increasing T. Infrared Hall constant is positive and almost independent of temperature in sharp contrast with the dc-Hall constant.Comment: 5 Pages, 5 Figures. Author list corrected in metadata only, paper is unchange

    Kinetically-controlled thin-film growth of layered β\beta- and γ−\gamma-Nax_{x}CoO2_{2} cobaltate

    Full text link
    We report growth characteristics of epitaxial β\beta-Na0.6_{0.6}CoO2_{2} and γ\gamma-Na0.7_{0.7}CoO2_{2} thin films on (001) sapphire substrates grown by pulsed-laser deposition. Reduction of deposition rate could change structure of Nax_{x}CoO2_{2} thin film from β\beta-phase with island growth mode to γ\gamma-phase with layer-by-layer growth mode. The γ\gamma-Na0.7_{0.7}CoO2_{2} thin film exhibits spiral surface growth with multiterraced islands and highly crystallized texture compared to that of the β\beta-Na0.6_{0.6}CoO2_{2} thin film. This heterogeneous epitaxial film growth can give opportunity of strain effect of physical properties and growth dynamics of Nax_{x}CoO2_{2} as well as subtle nature of structural change.Comment: accepted for publication in Applied Physics Letter

    Crustal interpretation of the MAGSAT data in the continental United States

    Get PDF
    The processing of MAGSAT scalar data to construct a crustal magnetic anomaly map over the continental U.S. involves removal of the reference field model, a path-by-path subtraction of a low order polynomial through a least-squares fit to reduce orbital offset errors, and a two dimensional spectral filtering to mitigate the spectral bias induced by the path-by-path orbital correction scheme. The resultant anomaly map shows reasonably good correlations with an aeromagnetic map derived from the project MAGNET. Prominent satellite magnetic anomalies are identified in terms of geological provinces and age boundaries. An inversion method was applied to MAGSAT data which produces both the Curie depth topography and laterally varying magnetic susceptibility of the crust. A contoured Curie depth map thus derived shows general agreements with a crustal thickness map based on seismic data

    Land use survey and mapping and water resources investigation in Korea

    Get PDF
    The author has identified the following significant results. Land use imagery is applicable to land use classification for small scale land use mapping less than 1:250,000. Land use mapping by satellite is more efficient and more cost-effective than land use mapping from conventional medium altitude aerial photographs. Six categories of level 1 land use classification are recognizable from MSS imagery. A hydrogeomorphological study of the Han River basin indicates that band 7 is useful for recognizing the soil and the weathering part of bed rock. The morphological change of the main river is accurately recognized and the drainage system in the area observed is easily classified because of the more or less simple rock type. Although the direct hydrological characteristics are not obtained from the MSS imagery, the indirect information such as the permeability of the soil and the vegetation cover, is helpful in interpreting the hydrological aspects

    Asymptotic deconfinement in high-density QCD

    Get PDF
    We discuss QCD with two light flavors at large baryon chemical potential mu. Color superconductivity leads to partial breaking of the color SU(3) group. We show that the infrared physics is governed by the gluodynamics of the remaining SU(2) group with an exponentially soft confinement scale Lambda_QCD' Delta*exp[-a*mu/(g*Delta)], where Delta<<mu is the superconducting gap, g is the strong coupling, and a=0.81... We estimate that at moderate baryon densities Lambda_QCD' is O(10 MeV) or smaller. The confinement radius increases exponentially with density, leading to "asymptotic deconfinement." The velocity of the SU(2) gluons is small due to the large dielectric constant of the medium.Comment: 4 pages; restructured, published versio

    Signature of Carrier-Induced Ferromagnetism in Ti_{1-x}Co_{x}O_{2-delta}: Exchange Interaction Between High-Spin Co 2+ and the Ti 3d Conduction Band

    Full text link
    X-ray photoemission spectroscopy measurements were performed on thin-film samples of rutile Ti_{1-x}Co_{x}O_{2-delta} to reveal the electronic structure. The Co 2p core level spectra indicate that the Co ions take the high-spin Co 2+ configuration, consistent with substitution on the Ti site. The high spin state and the shift due to the exchange splitting of the conduction band suggest strong hybridization between carriers in the Ti 3d t2g band and the t2g states of the high-spin Co 2+. These observations support the argument that room temperature ferromagnetism in Ti_{1-x}Co_{x}O_{2-delta} is intrinsic.Comment: 4 pages, 5 figures. Accepted for publication in Physical Review Letter

    Highly Efficient Midinfrared On-Chip Electrical Generation of Graphene Plasmons by Inelastic Electron Tunneling Excitation

    Get PDF
    Inelastic electron tunneling provides a low-energy pathway for the excitation of surface plasmons and light emission. We theoretically investigate tunnel junctions based on metals and graphene. We show that graphene is potentially a highly efficient material for tunneling excitation of plasmons because of its narrow plasmon linewidths, strong emission, and large tunability in the midinfrared wavelength regime. Compared to gold and silver, the enhancement can be up to 10 times for similar wavelengths and up to 5 orders at their respective plasmon operating wavelengths. Tunneling excitation of graphene plasmons promises an efficient technology for on-chip electrical generation and manipulation of plasmons for graphene-based optoelectronics and nanophotonic integrated circuits.Comment: 12 pages, 7 figure
    • …
    corecore