11 research outputs found

    Simulated microgravity with floating environment promotes migration of non-small cell lung cancers

    Get PDF
    A migration of cancer is one of the most important factors affecting cancer therapy. Particularly, a cancer migration study in a microgravity environment has gained attention as a tool for developing cancer therapy. In this study, we evaluated the proliferation and migration of two types (adenocarcinoma A549, squamous cell carcinoma H1703) of non-small cell lung cancers (NSCLC) in a floating environment with microgravity. When we measured proliferation of two NSCLCs in the microgravity (MG) and ground-gravity (CONT), although initial cell adhesion in MG was low, a normalized proliferation rate of A549 in MG was higher than that in CONT. Wound healing results of A549 and H1703 showed rapid recovery in MG; particularly, the migration rate of A549 was faster than that of H1703 both the normal and low proliferating conditions. Gene expression results showed that the microgravity accelerated the migration of NSCLC. Both A549 and H1703 in MG highly expressed the migration-related genes MMP-2, MMP-9, TIMP-1, and TIMP-2 compared to CONT at 24 h. Furthermore, analysis of MMP-2 protein synthesis revealed weaker metastatic performance of H1703 than that of A549. Therefore, the simulated microgravity based cancer culture environment will be a potential for migration and metastasis studies of lung cancers

    Double primary malignancies associated with colon cancer in patients with situs inversus totalis: two case reports

    Get PDF
    Situs inversus totalis (SIT) is not itself a premalignant condition, however, rare synchronous or metachronous multiple primary malignancies have been reported. Herein we present a case of synchronous transverse and sigmoid colon cancers and a case of metachronous rectosigmoid colon and gastric cancers in patients with SIT

    Production of transgenic first filial puppies expressing mutated human amyloid precursor protein gene

    Get PDF
    Propagation of transgenic animals by germline transmission using assisted reproductive technologies such as in vitro fertilization (IVF) is the most efficient way to produce transgenic colonies for biomedical research. The objective of this study was to generate transgenic puppies from a founder dog expressing the mutated human amyloid precursor protein (mhAPP) gene. Experiment I assessed the characteristics of the semen prepared by freshly diluted, swim-up, and Percoll gradient methods using a computer-assisted semen analyzer (CASA). Motile and progressively motile sperm counts were higher in the Percoll gradient samples (p < 0.05) than in the swim-up and freshly diluted samples. In Experiment II, a total of 59, 70, and 65 presumptive zygotes produced by fresh, Percoll gradient, and swim-up methods, respectively, were transferred to surrogates (5 for each group); the Percoll gradient (27.27%) and swim-up samples (14.29%) showed the highest blastocyst formation rates, while fresh diluted semen did not produce any blastocyst. Experiment III examined the full-term developmental ability of embryos. Among the 5 surrogates in the Percoll gradient group, one (20.0%) became pregnant; it had 4 (6.15%) sacs and delivered 4 (6.15%; 2 males and 2 females) live puppies. Among the 4 puppies, 2 (50.0%) were found to transmit the transgene on their nail and toe under GFP fluorescence. Furthermore, the integration and expression of the mhAPP transgene were examined in the umbilical cords of all the IVF-derived puppies, and the presence of the transgene was only observed in the GFP-positive puppies. Thus, semen prepared by the Percoll method could generate transgenic puppies by male germline transmission using the IVF technique. Our result will help propagate transgenic dogs efficiently, which will foster human biomedical research

    Seasonal Changes in Antibiotic Resistance Genes in Rivers and Reservoirs in South Korea

    No full text
    The fate of antibiotic resistance genes (ARGs) in aquatic environments, especially in rivers and reservoirs, is receiving growing attention in South Korea because reservoirs are an important source of drinking water in this country. Seasonal changes in the abundance of 11 ARGs and a mobile genetic element (int1) in two reservoirs in South Korea, located near drinking water treatment plants in Cheonan and Cheongju cities, were monitored for 6 mo. In these drinking water sources, total ARG concentrations reached 2.5 ?? 107 copies mL‒1, which is one order of magnitude higher than in influents of some wastewater treatment plants in South Korea. During the sampling periods in August, October, and November 2016 and January 2017, sulfonamides (sul1), ??-lactam antibiotics (blaTEM), and tetracycline (tetA) resistance genes were the most abundant genes at the two sites. The ARG abundance consistently increased in January relative to 16S ribosomal ribonucleic acid (rRNA) counts. General stress responses to oxidative stress and other environmental factors associated with the cold season could be significant drivers of ARG horizontal gene transfer in the environment. Accordingly, removal of ARGs as a key step in water treatment warrants more attention

    Korean Society of Gastrointestinal Endoscopy Guidelines for Endoscope Reprocessing

    No full text
    The Korean Society of Gastrointestinal Endoscopy (KSGE) issued guidelines for endoscope reprocessing for the first time in 1995, and the version of the guidelines was updated in August 2009, August 2012, and March 2015. Guidelines for endoscope reprocessing should be revised continuously, because new disinfectants and devices are developed and introduced. The current official version of the KSGE guidelines for endoscope reprocessing is explained herein to assist the reader in understanding the KSGE requirements for cleaning and disinfecting endoscopes

    Magnolin Inhibits Paclitaxel-Induced Cold Allodynia and ERK1/2 Activation in Mice

    No full text
    Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of anti-cancer drugs. The main symptoms often include sensory disturbances and neuropathic pain, and currently there is no effective treatment for this condition. This study aimed to investigate the suppressive effects of magnolin, an extracellular signal-regulated kinase (ERK) inhibitor substance derived from a 95% EtOH extract of the seeds of Magnolia denudata, on the symptoms of CIPN. A taxol-based anti-cancer drug paclitaxel (PTX) was repeatedly injected (2 mg/kg/day, total 8 mg/kg) into mice to induce CIPN. A neuropathic pain symptom was assessed using a cold allodynia test that scores behaviors of licking and shaking paw after plantar administration of acetone drop. Magnolin was administered intraperitoneally (0.1, 1, or 10 mg/kg) and behavioral changes to acetone drop were measured. The effect of magnolin administration on ERK expression in the dorsal root ganglion (DRG) was investigated using western blot analysis. The results showed that the repeated injections of PTX induced cold allodynia in mice. Magnolin administration exerted an analgesic effect on the PTX-induced cold allodynia and inhibited the ERK phosphorylation in the DRG. These results suggest that magnolin could be developed as an alternative treatment to suppress paclitaxel-induced neuropathic pain symptoms

    Interleukin 12 gene therapy of cancer by peritumoral injection of transduced autologous fibroblasts: Outcome of a phase I study

    No full text
    A phase I dose-escalation clinical trial of peritumoral injections of interleukin 12 (IL-12)-transduced autologous fibroblasts was performed in patients with disseminated cancer for whom effective treatment does not exist. The goals of this study were to assess the safety and toxicities as well as the efficacy, and ancillarily the immunomodulatory effects, of peritumoral IL-12 gene transfer. Primary dermal fibroblasts cultured from the patients were transduced with retroviral vector carrying human IL-12 genes (p35 and p40) as well as the neomycin phosphotransferase gene (TFG-hIL-12-Neo). Patients received four injections at intervals of 7 days. Nine patients were enrolled in this dose-escalation study, with secreted IL-12 doses ranging from 300 ng/24 hr for the first three patients to 1000, 3000, and 5000 ng/24 hr for two patients in each subsequent dosage level. Although a definite statement cannot be made, there appears to be perturbation of systemic immunity. Also, the locoregional effects mediated by tumor necrosis factor alpha (TNF-alpha) and CD8(+) T cells were observed with tumor regression. Treatment-related adverse events were limited to mild to moderate pain at the injection site; clinically significant toxicities were not encountered. Transient but clear reductions of tumor sizes were observed at the injected sites in four of nine cases, and at noninjected distant sites in one melanoma patient. Hemorrhagic necrosis of tumors was observed in two melanoma patients. These data indicate that gene therapy by peritumoral injection of IL-12-producing autologous fibroblasts is feasible, and promising in patients with advanced cancer
    corecore