14,634 research outputs found
Solid State NMR Characterization of Complex Metal Hydrides systems for Hydrogen Storage Applications
Solid state NMR is widely applied in studies of solid state chemistries for hydrogen storage reactions. Use of ^(11)B
MAS NMR in studies of metal borohydrides (BH_4) is mainly focused, revisiting the issue of dodecaborane formation
and observation of ^(11)B{^1H} Nuclear Overhauser Effect
Classical stability of U(1)_A domain walls in dense matter QCD
It was recently shown that there exists metastable U(1)_A domain wall
configurations in high-density QCD (\mu >> 1 GeV). In the following we will
assess the stability of such non-trivial field configurations at intermediate
densities (\mu < 1 GeV). The existence of such configurations at intermediate
densities could have interesting consequences for the physics of neutron stars
with high core density.Comment: 13 pages, 2 Postscript figures, typos correcte
Asymptotic deconfinement in high-density QCD
We discuss QCD with two light flavors at large baryon chemical potential mu.
Color superconductivity leads to partial breaking of the color SU(3) group. We
show that the infrared physics is governed by the gluodynamics of the remaining
SU(2) group with an exponentially soft confinement scale Lambda_QCD'
Delta*exp[-a*mu/(g*Delta)], where Delta<<mu is the superconducting gap, g is
the strong coupling, and a=0.81... We estimate that at moderate baryon
densities Lambda_QCD' is O(10 MeV) or smaller. The confinement radius increases
exponentially with density, leading to "asymptotic deconfinement." The velocity
of the SU(2) gluons is small due to the large dielectric constant of the
medium.Comment: 4 pages; restructured, published versio
Domain walls of high-density QCD
We show that in very dense quark matter there must exist metastable domain
walls where the axial U(1) phase of the color-superconducting condensate
changes by 2pi. The decay rate of the domain walls is exponentially suppressed
and we compute it semiclassically. We give an estimate of the critical chemical
potential above which our analysis is under theoretical control.Comment: 4 pages; Eq. (16) corrected, 2 new references added, published
versio
Spin injection across magnetic/non-magnetic interfaces with finite magnetic layers
We have reconsidered the problem of spin injection across
ferromagnet/non-magnetic-semiconductor (FM/NMS) and
dilute-magnetic-semiconductor/non-magnetic-semiconductor interfaces, for
structures with \textit{finite} magnetic layers (FM or DMS). By using
appropriate physical boundary conditions, we find expressions for the
resistances of these structures which are in general different from previous
results in the literature. When the magnetoresistance of the contacts is
negligible, we find that the spin-accumulation effect alone cannot account for
the dependence observed in recent magnetoresistance data. In a limited
parameter range, our formulas predict a strong dependence arising from the
magnetic contacts in systems where their magnetoresistances are sizable.Comment: 6 pages, 3 eps figs. (extended version- new title + two new figures
added
Electroweak phase transition in a nonminimal supersymmetric model
The Higgs potential of the minimal nonminimal supersymmetric standard model
(MNMSSM) is investigated within the context of electroweak phase transition. We
investigate the allowed parameter space yielding correct electroweak phase
transitoin employing a high temperature approximation. We devote to
phenomenological consequences for the Higgs sector of the MNMSSM for
electron-positron colliders. It is observed that a future linear
collider with GeV will be able to test the model with regard
to electroweak baryogenesis.Comment: 28 pages, 5 tables, 12 figure
Quarkonium from the Fifth Dimension
Adding fundamental matter of mass m_Q to N=4 Yang Mills theory, we study
quarkonium, and "generalized quarkonium" containing light adjoint particles. At
large 't Hooft coupling the states of spin<=1 are anomalously light (Kruczenski
et al., hep-th/0304032). We examine their form factors, and show these hadrons
are unlike any known in QCD. By a traditional yardstick they appear infinite in
size (as with strings in flat space) but we show that this is a failure of the
yardstick. All of the hadrons are actually of finite size ~ \sqrt{g^2N}/m_Q,
regardless of their radial excitation level and of how many valence adjoint
particles they contain. Certain form factors for spin-1 quarkonia vanish in the
large-g^2N limit; thus these hadrons resemble neither the observed J/Psi
quarkonium states nor rho mesons.Comment: 57 pages, LaTeX, 5 figure
Fermi point in graphene as a monopole in momentum space
We consider the effective field theory of graphene monolayer with the Coulomb
interaction between fermions taken into account. The gauge field in momentum
space is introduced. The position of the Fermi point coincides with the
position of the corresponding monopole. The procedure of extracting such
monopoles during lattice simulations is suggested.Comment: Latex, 12 page
- …
