20 research outputs found

    Lactobacillus rhamnosus L34 and Lactobacillus casei L39 suppress Clostridium difficile-induced IL-8 production by colonic epithelial cells

    Get PDF
    BACKGROUND: Clostridium difficile is the main cause of hospital-acquired diarrhea and colitis known as C. difficile-associated disease (CDAD).With increased severity and failure of treatment in CDAD, new approaches for prevention and treatment, such as the use of probiotics, are needed. Since the pathogenesis of CDAD involves an inflammatory response with a massive influx of neutrophils recruited by interleukin (IL)-8, this study aimed to investigate the probiotic effects of Lactobacillus spp. on the suppression of IL-8 production in response to C. difficile infection. RESULTS: We screened Lactobacillus conditioned media from 34 infant fecal isolates for the ability to suppress C. difficile-induced IL-8 production from HT-29 cells. Factors produced by two vancomycin-resistant lactobacilli, L. rhamnosus L34 (LR-L34) and L.casei L39 (LC-L39), suppressed the secretion and transcription of IL-8 without inhibiting C. difficile viability or toxin production. Conditioned media from LR-L34 suppressed the activation of phospho-NF-κB with no effect on phospho-c-Jun. However, LC-L39 conditioned media suppressed the activation of both phospho-NF-κB and phospho-c-Jun. Conditioned media from LR-L34 and LC-L39 also decreased the production of C. difficile-induced GM-CSF in HT-29 cells. Immunomodulatory factors present in the conditioned media of both LR-L34 and LC-L39 are heat-stable up to 100°C and > 100 kDa in size. CONCLUSIONS: Our results suggest that L. rhamnosus L34 and L. casei L39 each produce factors capable of modulating inflammation stimulated by C. difficile. These vancomycin-resistant Lactobacillus strains are potential probiotics for treating or preventing CDAD

    Lactobacillus plantarum B7 inhibits Helicobacter pylori growth and attenuates gastric inflammation

    No full text
    AIM: To determine the anti-Helicobacter property of Lactobacillus plantarum B7 (L. plantarum) B7 supernatants in vitro and the protective effects of L. plantarum B7 on serum tumor necrosis factor-alpha (TNF-α), gastric malondialdehyde (MDA) level, apoptosis, and histopathology in Helicobacter pylori (H. pylori)-induced gastric inflammation in rats

    Additional file 6: Table S4A. of Characterization of Lactobacillus salivarius strains B37 and B60 capable of inhibiting IL-8 production in Helicobacter pylori-stimulated gastric epithelial cells

    No full text
    Raw data used to generate Fig. 5 showing the effect of enzyme treatment on LCM of LS-B37; Table S4B Raw data used to generate Fig. 5 showing the effect of enzyme treatment on LCM of LS-B60. (DOCX 21 kb

    Oral Candida administration in a Clostridium difficile mouse model worsens disease severity but is attenuated by Bifidobacterium.

    No full text
    Gut fungi may influence the course of Clostridium difficile infection either positively or negatively for the host. Fungi are not prominent in the mouse gut, and C. albicans, the major human gastrointestinal commensal yeast, is in low abundance or absent in mice. Bifidobacterium is one of the probiotics that may attenuate the severity of C. difficile infection. Inflammatory synergy between C. albicans and C. difficile, in gut, may provide a state that more closely resembles human infection and be more suitable for testing probiotic effects. We performed fecal mycobiota analysis and administered C. albicans at 1 day prior to C. difficile dosing. Fecal eukaryotic 18S rDNA analysis demonstrated the presence of Ascomycota, specifically, Candida spp., after oral antibiotics, despite negative fecal fungal culture. C. albicans administration enhanced the severity of the C. difficile infection model as determined by mortality rate, weight loss, gut leakage (FITC-dextran assay), and serum and intestinal tissue cytokines. This occurred without increased fecal C. difficile or bacteremia, in comparison with C. difficile gavage alone. Candida lysate with C. difficile increased IL-8 production from HT-29 and Caco-2 human intestinal epithelial cell-lines. Bifidobacterium attenuated the disease severity of the C. difficile plus Candida model. The reduced severity was associated with decreased Candida burdens in feces. In conclusion, gut C. albicans worsened C. difficile infection, possibly through exacerbation of inflammation. Hence, a mouse model of Clostridium difficile infection with C. albicans present in the gut may better model the human patient condition. Gut fungal mycobiome investigation in patients with C. difficile is warranted and may suggest therapeutic targets

    Effects of probiotics on pancreatic inflammation and intestinal integrity in mice with acute pancreatitis

    No full text
    Abstract Background Severe acute pancreatitis is a potentially life-threatening disease. Despite being a common disorder, acute pancreatitis lacks a specific treatment. The present study aimed to examine the effects of probiotics on pancreatic inflammation and intestinal integrity in mice with acute pancreatitis. Methods Male ICR mice were randomly divided into 4 groups (n = 6 per group). The control group received two intraperitoneal (i.p.) injections of normal saline as a vehicle control. The acute pancreatitis (AP) group received two i.p. injections of L-arginine 450 mg/100 g body weight. AP plus probiotics groups received L-arginine to induce acute pancreatitis as above. In the single-strain and mixed-strain groups, mice received 1 mL of Lactobacillus plantarum B7 1 × 108 CFU/mL and 1 mL of Lactobacillus rhamnosus L34 1 × 108 CFU/mL and Lactobacillus paracasei B13 1 × 108 CFU/mL by oral gavage, respectively for 6 days starting 3 days prior to the AP induction. All mice were sacrificed 72 h after L-arginine injection. Pancreatic tissue was obtained for histological evaluation and immunohistochemical studies for myeloperoxidase, whereas ileal tissue was used for immunohistochemical studies for occludin, and claudin-1. Blood samples were collected for amylase analysis. Results Serum amylase levels and pancreatic myeloperoxidase levels in the AP group were significantly higher than in controls and significantly decreased in probiotic groups compared with the AP group. Ileal occludin and claudin-1 levels were significantly lower in the AP group than in controls. Ileal occludin levels significantly increased, whereas ileal claudin-1 levels did not significantly change in both probiotic groups as compared with the AP group. The pancreatic histopathology showed significantly higher degree of inflammation, edema, and fat necrosis in the AP group, and these changes improved in mixed-strained probiotic groups. Conclusions Probiotics, particularly the mixed-strain ones, attenuated AP via the reduction of inflammation and the maintenance of intestinal integrity

    Additional file 5: Table S3A. of Characterization of Lactobacillus salivarius strains B37 and B60 capable of inhibiting IL-8 production in Helicobacter pylori-stimulated gastric epithelial cells

    No full text
    Raw data used to generate Fig. 4b showing the effect of size fractionation on LCM of LS-B37; Table S3B Raw data used to generate Fig. 4b showing the effect of size fractionation on LCM of LS-B60. (DOCX 21 kb
    corecore