8 research outputs found

    Influence of Machining Parameters on Surface Roughness and Tool Flank Wear in Milling of Semi-Solid A356-T6 Aluminum Alloy

    Get PDF
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­ āļˆāļļāļ”āļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļ‚āļ­āļ‡āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰ āļ„āļ·āļ­ āļāļēāļĢāļĻāļķāļāļĐāļēāļœāļĨāļāļĢāļ°āļ—āļšāļ‚āļ­āļ‡āļ›āļąāļˆāļˆāļąāļĒāđƒāļ™āļāļēāļĢāļ•āļąāļ”āđ€āļ‰āļ·āļ­āļ™āđāļĨāļ°āļĢāļđāļ›āļ—āļĢāļ‡āļ‚āļ­āļ‡āļ”āļ­āļ āđ€āļ­āđ‡āļ™āļĄāļīāļĨ āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒ 7 āļ›āļąāļˆāļˆāļąāļĒ āļ„āļ·āļ­ āļ­āļąāļ•āļĢāļēāļ›āđ‰āļ­āļ™āļ•āđˆāļ­āļŸāļąāļ™ āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļ•āļąāļ” āļ„āļ§āļēāļĄāļĨāļķāļāļāļēāļĢāļāļąāļ”āđƒāļ™āđāļ™āļ§āļĢāļąāļĻāļĄāļĩ āļ„āļ§āļēāļĄāļĨāļķāļāļāļēāļĢāļāļąāļ”āđƒāļ™āđāļ™āļ§āđāļāļ™ āļĄāļļāļĄāļ„āļēāļĒāđ€āļĻāļĐ āļĄāļļāļĄāđ€āļĨāļ·āđ‰āļ­āļĒ āļĢāļ§āļĄāļ–āļķāļ‡āļˆāļģāļ™āļ§āļ™āļ„āļĄāļ•āļąāļ”āļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ„āđˆāļēāļ„āļ§āļēāļĄāļŦāļĒāļēāļšāļ‚āļ­āļ‡āļœāļīāļ§āđāļĨāļ°āļāļēāļĢāļŠāļķāļāļŦāļĢāļ­āļ—āļĩāđˆāļĄāļļāļĄāļŦāļĨāļšāļ‚āļ­āļ‡āļ”āļ­āļāđ€āļ­āđ‡āļ™āļĄāļīāļĨāđƒāļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļāļąāļ”āļ­āļ°āļĨāļđāļĄāļīāđ€āļ™āļĩāļĒāļĄāļŦāļĨāđˆāļ­āđāļšāļšāļāļķāđˆāļ‡āļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡āđ€āļāļĢāļ” A356-T6 āļ—āļĩāđˆāļ‚āļķāđ‰āļ™āļĢāļđāļ›āļ”āđ‰āļ§āļĒāļāļĢāļĢāļĄāļ§āļīāļ˜āļĩāļāļēāļĢāļ›āļĨāđˆāļ­āļĒāļŸāļ­āļ‡āđāļāđŠāļŠāđ€āļ‚āđ‰āļēāđ„āļ›āđƒāļ™āļ™āđ‰āļģāđ‚āļĨāļŦāļ°āļ‚āļ“āļ°āļĄāļĩāļāļēāļĢāđāļ‚āđ‡āļ‡āļ•āļąāļ§ (GISS)āđāļĨāļ°āļœāđˆāļēāļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ—āļēāļ‡ āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™ T6 āđƒāļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļŠāļīāđ‰āļ™āļ—āļ”āļŠāļ­āļšāļ–āļđāļāļāļąāļ”āđāļšāļšāđāļŦāđ‰āļ‡āļ”āđ‰āļ§āļĒāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļ‹āļĩāđ€āļ­āđ‡āļ™āļ‹āļĩāļĄāļīāļĨāļĨāļīāđˆāļ‡ āđāļĨāļ°āļ”āļ­āļāđ€āļ­āđ‡āļ™āļĄāļīāļĨāļ„āļēāļĢāđŒāđ„āļšāļ”āđŒāļ‚āļ™āļēāļ” 12 āļĄāļīāļĨāļĨāļīāđ€āļĄāļ•āļĢ āļˆāļēāļāļ™āļąāđ‰āļ™āļ„āđˆāļēāļ„āļ§āļēāļĄāļŦāļĒāļēāļšāļœāļīāļ§āļ§āļąāļ”āđ‚āļ”āļĒāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļ§āļąāļ”āļ„āļ§āļēāļĄāļŦāļĒāļēāļšāļœāļīāļ§ āđāļĨāļ°āļāļēāļĢāļŠāļķāļāļŦāļĢāļ­āļ‚āļ­āļ‡āļ”āļ­āļāđ€āļ­āđ‡āļ™āļĄāļīāļĨāļ§āļąāļ”āļ”āđ‰āļ§āļĒāļāļĨāđ‰āļ­āļ‡āđ„āļĄāđ‚āļ„āļĢāļŠāđ‚āļ„āļ› āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđƒāļŠāđ‰āļāļēāļĢāļ­āļ­āļāđāļšāļšāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđāļšāļšāđ€āļĻāļĐāļŠāđˆāļ§āļ™āđāļŸāļ„āļ—āļ­āđ€āļĢāļĩāļĒāļĨ 2 āļĢāļ°āļ”āļąāļšāđƒāļ™āļāļēāļĢāļ­āļ­āļāđāļšāļšāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđāļĨāļ°āđƒāļŠāđ‰āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļœāļĨāļ—āļēāļ‡āļŠāļ–āļīāļ•āļī āļˆāļēāļāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļžāļšāļ§āđˆāļēāļœāļĨāļāļĢāļ°āļ—āļšāļ‚āļ­āļ‡āļ›āļąāļˆāļˆāļąāļĒāļŦāļĨāļąāļāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ„āđˆāļēāļ„āļ§āļēāļĄāļŦāļĒāļēāļšāļœāļīāļ§āļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ”āļ„āļ·āļ­āļ­āļąāļ•āļĢāļēāļ›āđ‰āļ­āļ™āļ•āđˆāļ­āļŸāļąāļ™ āļ•āļēāļĄāļ”āđ‰āļ§āļĒāļˆāļģāļ™āļ§āļ™āļŸāļąāļ™ āļĄāļļāļĄāļ„āļēāļĒāđ€āļĻāļĐ āļ„āļ§āļēāļĄāļĨāļķāļāļāļēāļĢāļ•āļąāļ”āđƒāļ™āđāļ™āļ§āļĢāļąāļĻāļĄāļĩāđāļĨāļ°āļˆāļģāļ™āļ§āļ™āļ„āļĄāļ•āļąāļ”āļ•āļēāļĄāļĨāļģāļ”āļąāļš āļŠāđˆāļ§āļ™āļ›āļąāļˆāļˆāļąāļĒāļŦāļĨāļąāļāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļāļēāļĢāļŠāļķāļāļŦāļĢāļ­āļ—āļĩāđˆāļĄāļļāļĄāļŦāļĨāļšāļ‚āļ­āļ‡āļ”āļ­āļāđ€āļ­āđ‡āļ™āļĄāļīāļĨ āļ„āļ·āļ­ āļˆāļģāļ™āļ§āļ™āļ„āļĄāļ•āļąāļ” āļ­āļąāļ•āļĢāļēāļ›āđ‰āļ­āļ™āļ•āđˆāļ­āļŸāļąāļ™ āļ„āļ§āļēāļĄāļĨāļķāļāļāļēāļĢāļ•āļąāļ”āđƒāļ™āđāļ™āļ§āļĢāļąāļĻāļĄāļĩ āđāļĨāļ°āļ„āļ§āļēāļĄāļĨāļķāļāļāļēāļĢāļ•āļąāļ”āđƒāļ™āđāļ™āļ§āđāļāļ™āļ„āļģāļŠāļģāļ„āļąāļ: āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļāļąāļ”āļ”āđ‰āļ§āļĒāļ”āļ­āļāđ€āļ­āđ‡āļ™āļĄāļīāļĨ āļ­āļ°āļĨāļđāļĄāļīāđ€āļ™āļĩāļĒāļĄāļŦāļĨāđˆāļ­āđāļšāļšāļāļķāđˆāļ‡āļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡ A356 āļāļēāļĢāļ­āļ­āļāđāļšāļšāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡ āđāļšāļšāđ€āļĻāļĐāļŠāđˆāļ§āļ™āđāļŸāļ„āļ—āļ­āđ€āļĢāļĩāļĒāļĨ āļ„āđˆāļēāļ„āļ§āļēāļĄāļŦāļĒāļēāļšāļœāļīāļ§ āđāļĨāļ°āļāļēāļĢāļŠāļķāļāļŦāļĢāļ­āļ—āļĩāđˆāļĄāļļāļĄāļŦāļĨāļšāļ‚āļ­āļ‡āļ”āļ­āļāđ€āļ­āđ‡āļ™āļĄāļīāļĨ ABSTRACT The purpose of this study was to determine the influence of machining parameters   and tool geometry which are consisted of seven parameters; feed per tooth, cutting speed, radial depth of cut, axial depth of cut, rake angle, helix angle and number of teeth on surface roughness and tool flank wear in CNC end milling process of aluminum semi-solid A356. The workpieces were sized 48x48 millimeters cross section and 100 millimeters in length. These workpieces were produced by Gas Induced Semi-Solid Squeezed Casting (GISS-SC) and T6 heat treatment process. The settings of machining parameters in this experiment were conducted through the one eight fraction factorial experimental design. In addition, CNC machining center and uncoated carbide end milling cutter with a diameter of 12 millimeter were used under dry cutting  condition. The surface roughness of face end-milled was measured by the surface roughness tester and the tool flank wear was measured by microscopes. It was found that the strongest main factor influence to surface roughness was feed per tooth, followed by number of teeth, rake angle, radial rake angle and cutting speed respectively. On the tool flank wear, number of teeth, feed per tooth, radial depth of cut and axial depth of cut were found to have significant influence.Keywords: end milling process, aluminum semi-solid A356, fractional factorial design, surface roughness, tool flank wea

    Recycling of melamine formaldehyde waste as fine aggregate in lightweight concrete

    No full text
    Lightweight concrete production using melamine formaldehyde (MF) waste as fine aggregate by partially replacing river sand was investigated. Two forms of MF waste, granules and waste powder, were employed to produce the concrete of 1,000 and 1,300 kg/m3 . The replacements were 0%, 15%, 25% and 35% by weight with constant water-to-cement and cement-tofine aggregate ratios of 0.5 and 1.0, respectively. The concrete containing 25% waste powder was found to achieve the highest compressive strength and comply with the ASTM standard for non-load-bearing lightweight concrete. The results revealed the potential of MF waste recycling as fine aggregate in lightweight concrete

    āļ›āļąāļˆāļˆāļąāļĒāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļāļĢāļ°āļ—āļšāļ•āđˆāļ­āļāļēāļĢāļĨāļ”āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āđƒāļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ­āļšāđāļŦāđ‰āļ‡Parameters Affecting Particle Size Reduction of Tapioca Starch in Drying Process

    No full text
    āđƒāļ™āļ›āļĩ āļž.āļĻ. 2561 āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāļĄāļĩāļāļēāļĢāļŠāđˆāļ‡āļ­āļ­āļāđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āļīāļš 3.1 āļĨāđ‰āļēāļ™āļ•āļąāļ™ āļĄāļđāļĨāļ„āđˆāļē 1,037.0 āļĨāđ‰āļēāļ™āļ”āļ­āļĨāļĨāļēāļĢāđŒāļŠāļŦāļĢāļąāļāļŊ āđāļĨāļ°āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āļąāļ”āđāļ›āļĢ 1.0 āļĨāđ‰āļēāļ™āļ•āļąāļ™ āļĄāļđāļĨāļ„āđˆāļē 617.8 āļĨāđ‰āļēāļ™āļ”āļ­āļĨāļĨāļēāļĢāđŒāļŠāļŦāļĢāļąāļāļŊ āđāļĨāļ°āļ„āļēāļ”āļāļēāļĢāļ“āđŒāļĄāļđāļĨāļ„āđˆāļēāļāļēāļĢāļŠāđˆāļ‡āļ­āļ­āļāļˆāļ°āđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļ—āļļāļāļ›āļĩ āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļāļēāļĢāļĨāļ”āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļˆāļ°āļŠāđˆāļ§āļĒāđ€āļžāļīāđˆāļĄāļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļĢāļ§āļĄ āļŠāļēāļĄāļēāļĢāļ–āđ€āļžāļīāđˆāļĄāļ™āđ‰āļģāļŦāļ™āļąāļāļšāļĢāļĢāļˆāļļāļ”āđ‰āļ§āļĒāļ–āļļāļ‡āļšāļĢāļĢāļˆāļļāļ āļąāļ“āļ‘āđŒāļ‚āļ™āļēāļ”āđ€āļ—āđˆāļēāđ€āļ”āļīāļĄ āļ—āļģāđƒāļŦāđ‰āļ›āļĢāļīāļĄāļēāļ“āļ‚āļ™āļŠāđˆāļ‡āļ•āđˆāļ­āļŠāļđāļ‡āļ‚āļķāđ‰āļ™āļ‹āļķāđˆāļ‡āļˆāļ°āļŠāđˆāļ§āļĒāļ›āļĢāļ°āļŦāļĒāļąāļ”āļ„āđˆāļēāđƒāļŠāđ‰āļˆāđˆāļēāļĒāđƒāļ™āļāļēāļĢāļŠāđˆāļ‡āļ­āļ­āļāđ„āļ”āđ‰ āļˆāļļāļ”āļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļ‚āļ­āļ‡āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļ„āļ·āļ­āļāļēāļĢāļĻāļķāļāļĐāļēāļ›āļąāļˆāļˆāļąāļĒāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļāļĢāļ°āļ—āļšāļ•āđˆāļ­āļāļēāļĢāļĨāļ”āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡ āđ‚āļ”āļĒāļ­āļ­āļāđāļšāļš āļŠāļĢāđ‰āļēāļ‡ āļĢāļ§āļĄāļ–āļķāļ‡āļ•āļīāļ”āļ•āļąāđ‰āļ‡āđƒāļŠāđ‰āļ‡āļēāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĨāļ”āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āđƒāļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļœāļĨāļīāļ•āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡ āļ—āļąāđ‰āļ‡āļ™āļĩāđ‰āļāļģāļŦāļ™āļ”āļ­āļąāļ•āļĢāļēāļāļēāļĢāđ„āļŦāļĨāļ‚āļ­āļ‡āļĄāļ§āļĨāļ­āļēāļāļēāļĻāļœāđˆāļēāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĨāļ”āļ‚āļ™āļēāļ”āđ„āļ§āđ‰āļ„āļ‡āļ—āļĩāđˆāđ€āļ—āđˆāļēāļāļąāļš 60,000 āļĨāļđāļāļšāļēāļĻāļāđŒāđ€āļĄāļ•āļĢāļ•āđˆāļ­āļŠāļąāđˆāļ§āđ‚āļĄāļ‡ āđāļĨāļ°āļāļģāļŦāļ™āļ”āļ›āļąāļˆāļˆāļąāļĒāļŦāļĨāļąāļ 5 āļ›āļąāļˆāļˆāļąāļĒ āļ„āļ·āļ­ āļŠāļ™āļīāļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ­āļąāļ•āļĢāļēāļāļēāļĢāļ›āđ‰āļ­āļ™ āļ„āļ§āļēāļĄāļŠāļ·āđ‰āļ™āļ‚āļ­āļ‡āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡ āļĢāļđāļ›āđāļšāļšāđƒāļšāļžāļąāļ” āđāļĨāļ°āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļ›āļĨāļēāļĒāđƒāļšāļžāļąāļ” āđƒāļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĨāļ”āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļˆāļ°āļ–āļđāļāļ•āļīāļ”āļ•āļąāđ‰āļ‡āđƒāļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ­āļšāđāļŦāđ‰āļ‡āđāļšāļšāļžāļēāļŦāļ°āļĨāļĄ āļ‹āļķāđˆāļ‡āđƒāļŠāđ‰āļ§āļąāļ•āļ–āļļāļ”āļīāļšāđ€āļ›āđ‡āļ™āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āļīāļš āđāļĨāļ°āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āļąāļ”āđāļ›āļĢ āđƒāļ™āļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđ„āļ”āđ‰āļ§āļąāļ”āļ„āđˆāļēāļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āđ„āļŸāļŸāđ‰āļēāļ”āđ‰āļ§āļĒāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļāļīāđ‚āļĨāļ§āļąāļ•āļ•āđŒāļĄāļīāđ€āļ•āļ­āļĢāđŒ āļ„āđˆāļēāļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļ‚āļ­āļ‡āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āđ‰āļ§āļĒāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļ§āļąāļ”āļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļĢāļ§āļĄ āđāļĨāļ°āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļ„āļąāļ”āļ‚āļ™āļēāļ”āļ”āđ‰āļ§āļĒāļ•āļ°āđāļāļĢāļ‡āļĢāđˆāļ­āļ™āļĄāļēāļ•āļĢāļāļēāļ™ āđ‚āļ”āļĒāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āļāļēāļĢāļ­āļ­āļāđāļšāļšāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđāļšāļšāđāļŸāļāļ—āļ­āđ€āļĢāļĩāļĒāļĨāđƒāļ™āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļœāļĨāļ—āļēāļ‡āļŠāļ–āļīāļ•āļī āļˆāļēāļāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļžāļšāļ§āđˆāļēāļœāļĨāļāļĢāļ°āļ—āļšāļ‚āļ­āļ‡āļ›āļąāļˆāļˆāļąāļĒāļŦāļĨāļąāļāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļāļēāļĢāļĨāļ”āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ”āļ„āļ·āļ­āļĢāļđāļ›āđāļšāļšāļ‚āļ­āļ‡āđƒāļšāļžāļąāļ” āļ•āļēāļĄāļ”āđ‰āļ§āļĒāļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļ›āļĨāļēāļĒāđƒāļšāļžāļąāļ” āļŠāļ™āļīāļ”āļ‚āļ­āļ‡āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡ āļ„āļ§āļēāļĄāļŠāļ·āđ‰āļ™āļ‚āļ­āļ‡āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡ āļ•āļēāļĄāļĨāļģāļ”āļąāļš āđƒāļ™āļ‚āļ“āļ°āļ—āļĩāđˆāļ­āļąāļ•āļĢāļēāļāļēāļĢāļ›āđ‰āļ­āļ™āđ€āļ›āđ‡āļ™āļœāļĨāļāļĢāļ°āļ—āļšāļŦāļĨāļąāļāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļāļēāļĢāļĨāļ”āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ” āļ‹āļķāđˆāļ‡āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āļīāļšāļŦāļĨāļąāļ‡āļœāđˆāļēāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĨāļ”āļ‚āļ™āļēāļ”āļĄāļĩāļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡ D80 āļĨāļ”āļĨāļ‡āļˆāļēāļāđ€āļ”āļīāļĄ 61.90 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āđ€āļ›āđ‡āļ™ 54.71 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āļ—āļĩāđˆ D50 āļĨāļ”āļĨāļ‡āļˆāļēāļāđ€āļ”āļīāļĄ 53.21 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āđ€āļ›āđ‡āļ™ 41.82 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āđāļĨāļ°āļ„āđˆāļēāļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļĢāļ§āļĄāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļˆāļēāļ 575.12 āđ€āļ›āđ‡āļ™ 720.54 āļāļīāđ‚āļĨāļāļĢāļąāļĄāļ•āđˆāļ­āļĨāļđāļāļšāļēāļĻāļāđŒāđ€āļĄāļ•āļĢ āđƒāļ™āļŠāđˆāļ§āļ™āļ‚āļ­āļ‡āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āļąāļ”āđāļ›āļĢāļŦāļĨāļąāļ‡āļœāđˆāļēāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĨāļ”āļ‚āļ™āļēāļ”āļĄāļĩāļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āļ‚āļ­āļ‡āđ€āļĄāđ‡āļ”āđāļ›āđ‰āļ‡ D80 āļĨāļ”āļĨāļ‡āļˆāļēāļāđ€āļ”āļīāļĄ 56.77 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āđ€āļ›āđ‡āļ™ 49.92 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āļ—āļĩāđˆ D50 āļĨāļ”āļĨāļ‡āļˆāļēāļāđ€āļ”āļīāļĄ 42.26 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āđ€āļ›āđ‡āļ™ 37.54 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āđāļĨāļ°āļ„āđˆāļēāļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļĢāļ§āļĄāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™āļˆāļēāļ575.14 āđ€āļ›āđ‡āļ™ 703.70 āļāļīāđ‚āļĨāļāļĢāļąāļĄāļ•āđˆāļ­āļĨāļđāļāļšāļēāļĻāļāđŒāđ€āļĄāļ•āļĢ āļ—āļąāđ‰āļ‡āļ™āļĩāđ‰āļ„āđˆāļēāļ”āļąāļŠāļ™āļĩāļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āļžāļšāļ§āđˆāļēāļœāļĨāļāļĢāļ°āļ—āļšāļ‚āļ­āļ‡āļ›āļąāļˆāļˆāļąāļĒāļŦāļĨāļąāļāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ„āđˆāļēāļ”āļąāļŠāļ™āļĩāļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ”āļ„āļ·āļ­āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļ›āļĨāļēāļĒāđƒāļšāļžāļąāļ” āļĢāļ­āļ‡āļĨāļ‡āļĄāļēāļ„āļ·āļ­āļĢāļđāļ›āđāļšāļšāļ‚āļ­āļ‡āđƒāļšāļžāļąāļ” āļŠāļ™āļīāļ”āļ‚āļ­āļ‡āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡ āļ­āļąāļ•āļĢāļēāļāļēāļĢāļ›āđ‰āļ­āļ™āļ•āļēāļĄāļĨāļģāļ”āļąāļš āđƒāļ™āļ‚āļ“āļ°āļ—āļĩāđˆāļ„āļ§āļēāļĄāļŠāļ·āđ‰āļ™āļ‚āļ­āļ‡āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āđ€āļ›āđ‡āļ™āļœāļĨāļāļĢāļ°āļ—āļšāļŦāļĨāļąāļāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ„āđˆāļēāļ”āļąāļŠāļ™āļĩāļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ” āđ‚āļ”āļĒāđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āļīāļšāļĄāļĩāļ„āđˆāļēāļ”āļąāļŠāļ™āļĩāļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āđ€āļžāļ·āđˆāļ­āļĨāļ”āļ‚āļ™āļēāļ”āļ­āļ™āļļāļ āļēāļ„āđ€āļ—āđˆāļēāļāļąāļš 9.52–12.92 āļāļīāđ‚āļĨāļ§āļąāļ•āļ•āđŒ.āļŠāļąāđˆāļ§āđ‚āļĄāļ‡āļ•āđˆāļ­āļ•āļąāļ™āđāļ›āđ‰āļ‡ āđāļĨāļ°āđāļ›āđ‰āļ‡āļĄāļąāļ™āļŠāļģāļ›āļ°āļŦāļĨāļąāļ‡āļ”āļąāļ”āđāļ›āļĢāļĄāļĩāļ„āđˆāļēāļ”āļąāļŠāļ™āļĩāļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āļ­āļĒāļđāđˆāđƒāļ™āļŠāđˆāļ§āļ‡ 9.22–12.52 āļāļīāđ‚āļĨāļ§āļąāļ•āļ•āđŒ.āļŠāļąāđˆāļ§āđ‚āļĄāļ‡āļ•āđˆāļ­āļ•āļąāļ™āđāļ›āđ‰āļ‡In 2018, Thailand exported 3.1 million tons of native tapioca starch, worth 1,037.0 million US dollars. And modified tapioca starch, 1.0 million tons, worth 617.8 million US dollars. And forecast the export value will increase every year. Therefore, reducing the particle size of tapioca starch helps increase tapped bulk density. It can increase the weight with the same size packaging bag resulting in higher transportation volumes which will help save on export costs. The objective of this research was to determine the parameter that affects to a particle size reduction of tapioca starch. Involved with design, fabrication and installation on factory to produce tapioca starch. For the test method, the flow of air through with reducing machine is constant of 60,000 m3 h–1. Which are consisted of five parameters; type of tapioca starch, feed rate, moisture of material, type of blade and tip speed of blade. In addition, this machine was installed on drying process. The test material used as native tapioca starch and modified tapioca starch. The energy was measured by kilowatt-hour meter. A bulk density to analysis with tapped bulk density equipment and analysis of particle size with a sieve analyzer. This research was conducted under a factorial design, which is the most commonly used method for screening the primary and the combined effect of each factor. It was found that the strongest main factor influence a particle size reduction was the type of blade, followed by tip speed of blade, type of tapioca starch, the moisture of material and feed rate respectively. It was found that a particle size of native tapioca starch after through from reducing machine with flat blade type, particle size cut off on D80 were decrease from 61.90 micron to 54.71 micron and on D50 were decrease from 53.21 micron to 41.82 micron and the tapped bulk density increased from 575.12 to 720.54 kg m–3. And modified tapioca starch was found particle size cut off on D80 were decrease from 56.77 micron to 49.92 micron and on D50 were decrease from 42.26 micron to 37.54 micron and the tapped bulk density increased from 575.14 to 703.70 kg m–3. On the energy consumption was found that tip speed has to significant influence followed by type of blade, type of tapioca starch, feed rate and moisture of material respectively. And the energy index for native tapioca starch was 9.52–12.92 kWh ton–1 and modified tapioca starch was 9.22–12.52 kWh ton–1

    āļœāļĨāļāļĢāļ°āļ—āļšāļ‚āļ­āļ‡āļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāđ€āļŠāļĩāļĒāļ”āļ—āļēāļ™āđāļšāļšāļāļ§āļ™āļ•āđˆāļ­āļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĢāļ‡āļ”āļķāļ‡āļ‚āļ­āļ‡āļĢāļ­āļĒāļ•āđˆāļ­āļŠāļ™āļ­āļ°āļĨāļđāļĄāļīāđ€āļ™āļĩāļĒāļĄāļœāļŠāļĄāļŦāļĨāđˆāļ­āļāļķāđˆāļ‡āļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡āđ€āļāļĢāļ” 2024Influence of Friction Stir Welding Parameters on Tensile Strength of Semi-solid Cast 2024 Aluminum Alloy Butt Joints

    No full text
    āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāđ€āļŠāļĩāļĒāļ”āļ—āļēāļ™āđāļšāļšāļāļ§āļ™āđ€āļ›āđ‡āļ™āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāđāļšāļšāđ„āļĄāđˆāļŦāļĨāļ­āļĄāļĨāļ°āļĨāļēāļĒāļ‹āļķāđˆāļ‡āđƒāļŦāđ‰āļ„āļļāļ“āļ āļēāļžāļĢāļ­āļĒāđ€āļŠāļ·āđˆāļ­āļĄāļ—āļĩāđˆāļ”āļĩ āđ‚āļ”āļĒāđ€āļ‰āļžāļēāļ°āļŠāļģāļŦāļĢāļąāļšāļ§āļąāļŠāļ”āļļāļ—āļĩāđˆāđ€āļŠāļ·āđˆāļ­āļĄāđ„āļ”āđ‰āļĒāļēāļāļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļŦāļĨāļ­āļĄāļĨāļ°āļĨāļēāļĒ āļ­āļĒāđˆāļēāļ‡āđ„āļĢāļāđ‡āļ•āļēāļĄ āđƒāļ™āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāđ€āļŠāļĩāļĒāļ”āļ—āļēāļ™āđāļšāļšāļāļ§āļ™āļ™āļąāđ‰āļ™āļˆāļģāđ€āļ›āđ‡āļ™āļ•āđ‰āļ­āļ‡āļ•āļąāđ‰āļ‡āļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāđƒāļŦāđ‰āđ€āļŦāļĄāļēāļ°āļŠāļĄāđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āđ„āļ”āđ‰āļĢāļ­āļĒāđ€āļŠāļ·āđˆāļ­āļĄāļ—āļĩāđˆāļ”āļĩ āļ›āļĢāļ°āļāļ­āļšāļāļąāļšāļāļēāļĢāļĻāļķāļāļĐāļēāđ€āļĢāļ·āđˆāļ­āļ‡āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļ§āļąāļŠāļ”āļļāļ­āļ°āļĨāļđāļĄāļīāđ€āļ™āļĩāļĒāļĄāļœāļŠāļĄāļŦāļĨāđˆāļ­āļāļķāđˆāļ‡āļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡āļĒāļąāļ‡āļĄāļĩāļˆāļģāļ™āļ§āļ™āļ™āđ‰āļ­āļĒ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļˆāļķāļ‡āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļœāļĨāļāļĢāļ°āļ—āļšāļ‚āļ­āļ‡āļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāđ€āļŠāļĩāļĒāļ”āļ—āļēāļ™āđāļšāļšāļāļ§āļ™āļ•āļ­āđˆ āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļˆāļļāļĨāļ āļēāļ„ āđāļĨāļ°āļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĢāļ‡āļ”āļķāļ‡āļ‚āļ­āļ‡āđāļ™āļ§āđ€āļŠāļ·āđˆāļ­āļĄāļ•āđˆāļ­āļŠāļ™āļ§āļąāļŠāļ”āļļāļ­āļ°āļĨāļđāļĄāļīāđ€āļ™āļĩāļĒāļĄāļœāļŠāļĄāļŦāļĨāđˆāļ­āļāļķāđˆāļ‡āļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡ 2024 āļ”āđ‰āļ§āļĒāđ€āļ—āļ„āļ™āļīāļ„āļ­āļ­āļāđāļšāļšāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđāļšāļšāđāļŸāļāļ—āļ­āđ€āļĢāļĩāļĒāļĨāđ€āļ•āđ‡āļĄāļˆāļģāļ™āļ§āļ™āđ‚āļ”āļĒāļāļģāļŦāļ™āļ”āļ›āļąāļˆāļˆāļąāļĒāđƒāļ™āļāļēāļĢāļ—āļ”āļĨāļ­āļ‡ 3 āļ›āļąāļˆāļˆāļąāļĒ āđ„āļ”āđ‰āđāļāđˆ āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļĢāļ­āļšāđƒāļ™āļāļēāļĢāļŦāļĄāļļāļ™āļāļ§āļ™āļ—āļĩāđˆ 530 āđāļĨāļ° 790 āļĢāļ­āļšāļ•āđˆāļ­āļ™āļēāļ—āļĩ āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āđ€āļ”āļīāļ™āđ€āļŠāļ·āđˆāļ­āļĄāļ—āļĩāđˆ 22 āđāļĨāļ° 36 āļĄāļīāļĨāļĨāļīāđ€āļĄāļ•āļĢāļ•āđˆāļ­āļ™āļēāļ—āļĩ āđāļĨāļ°āļĢāļđāļ›āļ—āļĢāļ‡āļ‚āļ­āļ‡āļŦāļąāļ§āļāļ§āļ™ āđāļšāļšāļ—āļĢāļ‡āļāļĢāļ§āļĒ āļ—āļĢāļ‡āļāļĢāļ°āļšāļ­āļāđ€āļĢāļĩāļĒāļš āđāļĨāļ°āļ—āļĢāļ‡āļāļĢāļ°āļšāļ­āļāđ€āļāļĨāļĩāļĒāļ§āļœāļĨāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļžāļšāļ§āđˆāļē āļœāļĨāļāļĢāļ°āļ—āļšāļŦāļĨāļąāļāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ„āđˆāļēāļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĢāļ‡āļ”āļķāļ‡āļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ” āļ„āļ·āļ­ āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļĢāļ­āļšāđƒāļ™āļāļēāļĢāļŦāļĄāļļāļ™āļāļ§āļ™ āđāļĨāļ°āļĢāļđāļ›āļ—āļĢāļ‡āļ‚āļ­āļ‡āļŦāļąāļ§āļāļ§āļ™āļ•āļēāļĄāļĨāļģāļ”āļąāļš āļ—āļĩāđˆāļĢāļ°āļ”āļąāļšāļ™āļąāļĒāļŠāļģāļ„āļąāļ 95% āđƒāļ™āļ‚āļ“āļ°āļ—āļĩāđˆāļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āđ€āļ”āļīāļ™āđ€āļŠāļ·āđˆāļ­āļĄāđƒāļ™āļŠāđˆāļ§āļ‡āļĢāļ°āļ”āļąāļšāļ›āļąāļˆāļˆāļąāļĒāļ—āļĩāđˆāļĻāļķāļāļĐāļēāđ„āļĄāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĢāļ‡āļ”āļķāļ‡āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļ āđ‚āļ”āļĒāļĢāļđāļ›āļ—āļĢāļ‡āļ‚āļ­āļ‡āļŦāļąāļ§āļāļ§āļ™āđāļšāļšāļ—āļĢāļ‡āļāļĢāļ°āļšāļ­āļāđ€āļĢāļĩāļĒāļš āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļĢāļ­āļšāđƒāļ™āļāļēāļĢāļŦāļĄāļļāļ™āļāļ§āļ™ 530 āļĢāļ­āļšāļ•āđˆāļ­āļ™āļēāļ—āļĩ āđāļĨāļ°āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āđ€āļ”āļīāļ™āđ€āļŠāļ·āđˆāļ­āļĄ 36 āļĄāļīāļĨāļĨāļīāđ€āļĄāļ•āļĢāļ•āđˆāļ­āļ™āļēāļ—āļĩ āđƒāļŦāđ‰āļ„āđˆāļēāđ€āļ‰āļĨāļĩāđˆāļĒāļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĢāļ‡āļ”āļķāļ‡āļŠāļđāļ‡āļŠāļļāļ” 212 āđ€āļĄāļāļ°āļ›āļēāļŠāļ„āļēāļĨ āļ„āļīāļ”āđ€āļ›āđ‡āļ™āļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĢāļ‡āļ”āļķāļ‡āļ‚āļ­āļ‡āļ‡āļēāļ™āđ€āļŠāļ·āđˆāļ­āļĄāļ•āđˆāļ­āđ€āļ™āļ·āđ‰āļ­āļ§āļąāļŠāļ”āļļāđ€āļ”āļīāļĄāđ€āļ—āđˆāļēāļāļąāļš 99%Friction stir welding is one of solid state welding techniques which provide good weld joint compared with fusion welding techniques, especially for difficult-to-fusion welded materials. However, appropriate welding parameters were necessary to achieve good weld joints with friction stir welding. Moreover, there are a few reports on welding of semi-solid aluminum. The aims of this study are to investigate the influence of friction stir welding parameters on the microstructure and tensile strength of friction stir welding of butt joints between Semi-solid cast aluminum alloy 2024. A full factorial design technique was employed with 3 parameters, consisting of the rotation speed, welding speed and shape of stir head (cone, cylindrical and thread). Based on statistical results, it was found that the rotational speed and the shape of stir head parameters had an influence on microstructure and tensile strength of a welded joint, while welding speed was not a significant parameter at the 95% significance level. It was indicated that a cylindrical stir head at a rotational speed of 790 rpm and 36 mm/min welding speed yielded the highest tensile strength of 212 MPa, accounting for 99% of based material tensile strength

    āļ­āļīāļ—āļ˜āļīāļžāļĨāļ‚āļ­āļ‡āđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒāļ•āđˆāļ­āļāļēāļĢāļŦāļ™āđˆāļ§āļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļĢāļĩāđ„āļŪāđ€āļ”āļĢāļŠāļąāļ™āļ‚āļ­āļ‡āļĒāļīāļ›āļ‹āļąāļĄInfluence of Melamine Formaldehyde Waste on Retardation of Gypsum Rehydration Reaction

    No full text
    āđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒāđ€āļ›āđ‡āļ™āļ‚āļĒāļ°āļžāļĨāļēāļŠāļ•āļīāļāļ›āļĢāļ°āđ€āļ āļ—āđ€āļ—āļ­āļĢāđŒāđ‚āļĄāđ€āļ‹āđ‡āļ•āļ•āļīāļ‡āļ—āļĩāđˆāđ„āļĄāđˆāļŠāļēāļĄāļēāļĢāļ–āļ™āļģāļāļĨāļąāļšāļĄāļēāļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨāļ”āđ‰āļ§āļĒāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™ āļ›āļąāļˆāļˆāļļāļšāļąāļ™āļ‚āļĒāļ°āļžāļĨāļēāļŠāļ•āļīāļāļ›āļĢāļ°āđ€āļ āļ—āđ€āļ—āļ­āļĢāđŒāđ‚āļĄāđ€āļ‹āđ‡āļ•āļ•āļīāļ‡āļĄāļĩāļāļēāļĢāļāļģāļˆāļąāļ”āđ‚āļ”āļĒāļ§āļīāļ˜āļĩāļāļēāļĢāļāļąāļ‡āļāļĨāļš āļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āļ§āļīāļ˜āļĩāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļāļĢāļ°āļ—āļšāļ•āđˆāļ­āļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄ āļāļēāļĢāļĻāļķāļāļĐāļēāļ§āļąāļŠāļ”āļļāļŠāļģāļŦāļĢāļąāļšāļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāļāļēāļĢāļœāļĨāļīāļ•āđāļœāđˆāļ™āļĒāļīāļ›āļ‹āļąāļĄāđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āđ„āļ”āđ‰āļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāļ•āļĢāļ‡āļ•āļēāļĄāļ„āļ§āļēāļĄāļ•āđ‰āļ­āļ‡āļāļēāļĢāđƒāļŠāđ‰āļ‡āļēāļ™ āļĄāļĩāļŦāļĨāļēāļāļŦāļĨāļēāļĒāļŠāļ™āļīāļ” āļŦāļ™āļķāđˆāļ‡āđƒāļ™āļ™āļąāđ‰āļ™āļ„āļ·āļ­āļ§āļąāļŠāļ”āļļāļŠāļģāļŦāļĢāļąāļšāđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļŠāļēāļĢāļŦāļ™āđˆāļ§āļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļĢāļĩāđ„āļŪāđ€āļ”āļĢāļŠāļąāļ™āļ‚āļ­āļ‡āļĒāļīāļ›āļ‹āļąāļĄ āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļ­āļīāļ—āļ˜āļīāļžāļĨāļ‚āļ­āļ‡āđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒāļ•āđˆāļ­āļāļēāļĢāļŦāļ™āđˆāļ§āļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļāļēāļĢāļœāļĨāļīāļ•āđāļœāđˆāļ™āļĒāļīāļ›āļ‹āļąāļĄ āļžāļĢāđ‰āļ­āļĄāļ—āļąāđ‰āļ‡āļĻāļķāļāļĐāļēāđāļ™āļ§āļ—āļēāļ‡āđƒāļ™āļāļēāļĢāļĢāļĩāđ„āļ‹āđ€āļ„āļīāļĨāđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒ āđ‚āļ”āļĒāđƒāļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđƒāļŠāđ‰āđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒāđāļšāļšāļœāļ‡āļ—āļĩāđˆāļĄāļĩāļ‚āļ™āļēāļ” <200, 200–500, 500–1,000 āđāļĨāļ° 1,000–5,000 āđ„āļĄāđ‚āļ„āļĢāđ€āļĄāļ•āļĢ āļ—āļĩāđˆāļŠāļąāļ”āļŠāđˆāļ§āļ™āļœāļŠāļĄāđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒāļĢāđ‰āļ­āļĒāļĨāļ° 5, 10 āđāļĨāļ° 20 āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļāļ‚āļ­āļ‡āļ›āļđāļ™āļ›āļĨāļēāļŠāđ€āļ•āļ­āļĢāđŒ āđāļĨāļ°āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ™āđ‰āļģāļ•āđˆāļ­āļ›āļđāļ™āļ›āļĨāļēāļŠāđ€āļ•āļ­āļĢāđŒāļ—āļąāđ‰āļ‡āļ—āļĩāđˆāļœāļŠāļĄāđāļĨāļ°āļĒāļąāļ‡āđ„āļĄāđˆāļœāļŠāļĄāđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒāļ„āļ‡āļ—āļĩāđˆāđ€āļ—āđˆāļēāļāļąāļš 0.75 āļāļēāļĢāļĻāļķāļāļĐāļēāļŠāļĄāļšāļąāļ•āļīāļ•āđˆāļēāļ‡āđ† āļ‚āļ­āļ‡āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒ āļŠāļĄāļšāļąāļ•āļīāļ—āļēāļ‡āļāļēāļĒāļ āļēāļžāđāļĨāļ°āļŠāļĄāļšāļąāļ•āļīāļ—āļēāļ‡āļāļĨāļ‚āļ­āļ‡āļŠāļīāđ‰āļ™āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļĒāļīāļ›āļ‹āļąāļĄ āļ­āļĩāļāļ—āļąāđ‰āļ‡āļĒāļąāļ‡āļĻāļķāļāļĐāļēāļāļēāļĢāļāđˆāļ­āļ•āļąāļ§āļĢāļ°āļĒāļ°āļ•āđ‰āļ™ āļāļēāļĢāļāđˆāļ­āļ•āļąāļ§āļĢāļ°āļĒāļ°āļ›āļĨāļēāļĒ āļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āļ”āļąāļ” āļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āļ­āļąāļ” āļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āļœāļīāļ§ āļāļēāļĢāļ”āļđāļ”āļ‹āļķāļĄāļ™āđ‰āļģ āđāļĨāļ°āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļˆāļļāļĨāļ āļēāļ„āļ‚āļ­āļ‡āļŠāļīāđ‰āļ™āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ›āļđāļ™āļ›āļĨāļēāļŠāđ€āļ•āļ­āļĢāđŒāļ—āļĩāđˆāļĄāļĩāļŠāđˆāļ§āļ™āļœāļŠāļĄāļ‚āļ­āļ‡āđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļē āđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļŸāļ­āļĢāđŒāļĄāļēāļĨāļ”āļĩāđ„āļŪāļ”āđŒāļĄāļĩāļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļŦāļ™āđˆāļ§āļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļĢāļĩāđ„āļŪāđ€āļ”āļĢāļŠāļąāļ™āļ‚āļ­āļ‡āļĒāļīāļ›āļ‹āļąāļĄ āļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āļāļēāļĢāļāđˆāļ­āļ•āļąāļ§āļĢāļ°āļĒāļ°āļ•āđ‰āļ™āđāļĨāļ°āļĢāļ°āļĒāļ°āļ›āļĨāļēāļĒāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ āļ‹āļķāđˆāļ‡āļĄāļĩāļŠāđˆāļ§āļ™āļŠāđˆāļ§āļĒāđƒāļ™āļāļēāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āļŠāļĄāļšāļąāļ•āļīāļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āļœāļīāļ§āļ‚āļ­āļ‡āļĒāļīāļ›āļ‹āļąāļĄāļ—āļĩāđˆāļ”āļĩāļ‚āļķāđ‰āļ™ āļāļēāļĢāļ”āļđāļ”āļ‹āļķāļĄāļ™āđ‰āļģāļ‚āļ­āļ‡āļŠāļīāđ‰āļ™āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ›āļđāļ™āļ›āļĨāļēāļŠāđ€āļ•āļ­āļĢāđŒāļœāļŠāļĄāđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āđ€āļžāļīāđˆāļĄāļĄāļēāļāļ‚āļķāđ‰āļ™ āļ­āļĩāļāļ—āļąāđ‰āļ‡āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āļ‚āļ­āļ‡āļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āļ”āļąāļ”āđāļĨāļ°āļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āļ­āļąāļ”āļœāđˆāļēāļ™āđ€āļāļ“āļ‘āđŒāļĄāļēāļ•āļĢāļāļēāļ™ UNE-EN 13276-1: 2009Melamine formaldehyde waste is thermosetting plastic waste which cannot be recycled with heat. Its disposal method is landfill which is not environmentally friendly. There are some materials for Gypsum board production including retarders. Retarder is one of the important additives that retards the gypsum rehydration reaction. This research studies the influence of melamine formaldehyde waste on this reaction and how to recycle it. The melamine formaldehyde waste powder was employed to produce gypsum specimen. The replacements were 5%, 10% and 20% by plaster weight with particle size less than 200, 200–500, 500–1,000 and 1,000–5,000 micrometers and constant ratio of water to plaster was 0.75. Physical and mechanical properties of gypsum specimen containing melamine formaldehyde waste powder were investigated on initial setting time, final setting time, density, flexural strength, compressive strength, surface hardness, water absorption and microstructure. The experimental results revealed that the initial setting time, final setting time, surface hardness and water absorption of the new composite material increased. Therefore, it created more retardation of gypsum rehydration reaction. The new composite had the flexural strength and compressive strength complied with the UNE-EN 13276-1: 2009 standard with the potential to save waste disposal cost

    āļ­āļīāļ—āļ˜āļīāļžāļĨāļ‚āļ™āļēāļ”āļ„āļĨāļ°āļ‚āļ­āļ‡āļĄāļ§āļĨāļĢāļ§āļĄāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āļ­āļąāļ”āđāļĨāļ°āļāļēāļĢāļŠāļ°āļĨāļ°āļĨāļēāļĒāđ‚āļĨāļŦāļ°āļŦāļ™āļąāļāļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļĄāļ§āļĨāđ€āļšāļēāļœāļŠāļĄāđ€āļĻāļĐāļ‚āļ­āļ‡āđ€āļŠāļĩāļĒāđ€āļĄāļĨāļēāļĄāļĩāļ™Influence of Aggregate Fineness Modulus on Compressive Strength and Heavy Metal Leaching of Lightweight Concrete Containing Recycled Melamine Waste

    No full text
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­Â āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļ­āļīāļ—āļ˜āļīāļžāļĨāļ‚āļ™āļēāļ”āļ„āļĨāļ°āđ€āļĻāļĐāļ‚āļ­āļ‡āđ€āļŠāļĩāļĒāđ€āļĄāļĨāļēāļĄāļĩāļ™āļ•āđˆāļ­āļŠāļĄāļšāļąāļ•āļīāđ€āļŠāļīāļ‡āļāļĨāļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļĄāļ§āļĨāđ€āļšāļēāđ€āļ‹āļĨāļĨāļđāļĨāļēāļĢāđŒ āđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļ›āđ‡āļ™āļ§āļąāļŠāļ”āļļāļĄāļ§āļĨāļĢāļ§āļĄāļĨāļ°āđ€āļ­āļĩāļĒāļ”āđƒāļ™āļāļēāļĢāđāļ—āļ™āļ—āļĩāđˆāļ—āļĢāļēāļĒāļĢāđ‰āļ­āļĒāļĨāļ° 25 āđ‚āļ”āļĒāļ™āđ‰āļģāļŦāļ™āļąāļ āđ‚āļ”āļĒāļĄāļĩāļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āļ•āđˆāļ­āļĄāļ§āļĨāļĢāļ§āļĄāļĨāļ°āđ€āļ­āļĩāļĒāļ”āđ€āļ—āđˆāļēāļāļąāļš 1.0 āđāļĨāļ° āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ™āđ‰āļģāļ•āđˆāļ­āļ§āļąāļŠāļ”āļļāļ›āļĢāļ°āļŠāļēāļ™āđ€āļ—āđˆāļēāļāļąāļš 0.5 āđāļĨāļ°āļ„āļ§āļšāļ„āļļāļĄāļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļŠāļ” 1,300 āļāļīāđ‚āļĨāļāļĢāļąāļĄ/āļĨāļđāļāļšāļēāļĻāļāđŒāđ€āļĄāļ•āļĢ āļāļēāļĢāđāļ—āļ™āļ—āļĩāđˆāļ—āļĢāļēāļĒāļ”āđ‰āļ§āļĒāđ€āļĻāļĐāđ€āļĄāļĨāļēāļĄāļĩāļ™āļ—āļĩāđˆāļĄāļĩāļ„āđˆāļēāđ‚āļĄāļ”āļđāļĨāļąāļŠāļ„āļ§āļēāļĄāļĨāļ°āđ€āļ­āļĩāļĒāļ”āđ€āļ—āđˆāļēāļāļąāļšÂ  FM1.25  FM1.0  FM0.75 āđāļĨāļ° FM0.5āļāļēāļĢāļĻāļķāļāļĐāļēāļŠāļĄāļšāļąāļ•āļīāļ•āđˆāļēāļ‡ āđ† āļ‚āļ­āļ‡āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒ āļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āļ­āļąāļ” āļāļēāļĢāļ”āļđāļ”āļ‹āļķāļĄāļ™āđ‰āļģāđāļĨāļ°āļāļēāļĢāļŠāļ°āļĨāļ°āļĨāļēāļĒāđ‚āļĨāļŦāļ°āļŦāļ™āļąāļ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļē āļāļēāļĢāđāļ—āļ™āļ—āļĩāđˆāļ—āļĢāļēāļĒāļ”āđ‰āļ§āļĒāđ€āļĻāļĐāļ‚āļ­āļ‡āđ€āļŠāļĩāļĒāđ€āļĄāļĨāļēāļĄāļĩāļ™āļĢāđ‰āļ­āļĒāļĨāļ° 25 āļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āļ­āļąāļ”āđāļĨāļ°āļāļēāļĢāļ”āļđāļ”āļ‹āļķāļĄāļ™āđ‰āļģāļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļĄāļ§āļĨāđ€āļšāļēāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ āđ‚āļ”āļĒāļ—āļĩāđˆāđ€āļĻāļĐāļ‚āļ­āļ‡āđ€āļŠāļĩāļĒāđ€āļĄāļĨāļēāļĄāļĩāļ™āļ—āļĩāđˆāļĄāļĩāļ„āđˆāļēāđ‚āļĄāļ”āļđāļĨāļąāļŠāļ„āļ§āļēāļĄāļĨāļ°āđ€āļ­āļĩāļĒāļ”āđ€āļ—āđˆāļē FM0.75 āđāļŠāļ”āļ‡āļ„āđˆāļēāļāļģāļĨāļąāļ‡āļĢāļąāļšāđāļĢāļ‡āļ­āļąāļ”āļŠāļđāļ‡āļŠāļļāļ” āļ­āļĩāļāļ—āļąāđ‰āļ‡āļ„āđˆāļēāļāļēāļĢāļ”āļđāļ”āļ‹āļķāļĄāļ™āđ‰āļģāļ‚āļ­āļ‡āļ„āļ­āļ™āļāļĢāļĩāļ•āļĄāļ§āļĨāđ€āļšāļēāļĨāļ”āļĨāļ‡āļ•āļēāļĄāļ„āđˆāļēāđ‚āļĄāļ”āļđāļĨāļąāļŠāļ„āļ§āļēāļĄāļĨāļ°āđ€āļ­āļĩāļĒāļ”āļ‚āļ­āļ‡āđ€āļĻāļĐāļ‚āļ­āļ‡āđ€āļŠāļĩāļĒāđ€āļĄāļĨāļēāļĄāļĩāļ™āļ—āļĩāđˆāđ€āļžāļīāđˆāļĄāļ‚āļķāđ‰āļ™ āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļŠāļ°āļĨāļ°āļĨāļēāļĒāđ‚āļĨāļŦāļ°āļŦāļ™āļąāļāļ‚āļ­āļ‡āđ€āļĻāļĐāļ‚āļ­āļ‡āđ€āļŠāļĩāļĒāđ€āļĄāļĨāļēāļĄāļĩāļ™āđƒāļ™āļ„āļ­āļ™āļāļĢāļĩāļ•āļĄāļ§āļĨāđ€āļšāļēāđ€āļ‹āļĨāļĨāļđāļĨāļēāļĢāđŒāļĄāļĩāļ„āđˆāļēāđ„āļĄāđˆāđ€āļāļīāļ™āļĄāļēāļ•āļĢāļāļēāļ™ U.S.EPA āđāļĨāļ°āļ›āļĢāļ°āļāļēāļĻāļāļĢāļ°āļ—āļĢāļ§āļ‡āļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄ āļ‰āļšāļąāļšāļ—āļĩāđˆ 6 āđ€āļĢāļ·āđˆāļ­āļ‡ āļāļēāļĢāļāļģāļˆāļąāļ”āļŠāļīāđˆāļ‡āļ›āļāļīāļāļđāļĨāļŦāļĢāļ·āļ­āļ§āļąāļŠāļ”āļļāļ—āļĩāđˆāđ„āļĄāđˆāđƒāļŠāđ‰āđāļĨāđ‰āļ§AbstractThis research aimed to investigate influence of aggregate fineness modulus on mechanical properties of cellular lightweight concrete containing melamine waste as fine aggregate. Melamine waste was used to partially replace sand at the rate of 25% by weight. The mixed ratio of cement: aggregate: water was set at 1:1:0.5 by weight. Density of fresh concrete was controlled at 1,300 kg/m3. The concrete specimens were varied by fineness modulus (FM) of the waste at FM1.25, FM1.0, FM0.75 and FM0.5. Compressive strength, water absorption and leaching test of heavy metal were investigated. The result was found that the melamine waste mixing yielded higher compressive strength and water absorption compared to reference lightweight concrete. The FM0.75 specimen resulted the highest compressive strength. It was also found that water absorption was slightly decrease with increasing fineness modulus of the waste.  The leaching of heavy metals were determined by following the Toxicity Characteristic Leaching Procedure (TCLP). It was found that the concentration of As, Cd, and Pb were not exceed the limitation specified by the U.S.EPA and Ministry of Industry Announcement No. 6 (1997

    Structural Equation Model of Factors Influencing the Selection of Industrial Waste Disposal Service in Cement Kilns

    No full text
    Industrial waste disposal in a cement kiln is an operation that includes waste disposal as well as the conversion of waste into renewable energy, which is a cement industry in many countries. This research studied business factors related to the intention to use co-processing industrial waste disposal service in cement kilns by surveying the data with questionnaires from 1251 customers nationwide. The objectives of this research were to study the relationship of business factors by using structural equation modeling to analyze factors influencing the selection of industrial waste disposal service in cement kilns. The study results found that customer attitude towards the following factors, including perceived ease of use, perceived usefulness, disposal price, service provider location, promotion, people, and a service provider’s infrastructure, influenced intention to use the service. The variables that customers gave importance to were the industrial waste disposal with zero wastes to landfill and the use of industrial waste relevant to the circular economy by using the industrial waste, which has a quality of renewable fuel in cement kiln as the renewable fuel of the cement furnace. According to the research results, service providers in cement kilns can potentially plan service strategies to achieve sustainability for further business operations in a highly competitive market
    corecore