845 research outputs found

    The Management and Use of Social Network Sites in a Government Department

    Full text link
    In this paper we report findings from a study of social network site use in a UK Government department. We have investigated this from a managerial, organisational perspective. We found at the study site that there are already several social network technologies in use, and that these: misalign with and problematize organisational boundaries; blur boundaries between working and social lives; present differing opportunities for control; have different visibilities; have overlapping functionality with each other and with other information technologies; that they evolve and change over time; and that their uptake is conditioned by existing infrastructure and availability. We find the organisational complexity that social technologies are often hoped to cut across is, in reality, something that shapes their uptake and use. We argue the idea of a single, central social network site for supporting cooperative work within an organisation will hit the same problems as any effort of centralisation in organisations. We argue that while there is still plenty of scope for design and innovation in this area, an important challenge now is in supporting organisations in managing what can best be referred to as a social network site 'ecosystem'.Comment: Accepted for publication in JCSCW (The Journal of Computer Supported Cooperative Work

    Thermal development of latent fingermarks on porous surfaces-Further observations and refinements

    Full text link
    In a further study of the thermal development of fingermarks on paper and similar surfaces, it is demonstrated that direct contact heating of the substrate using coated or ceramic surfaces at temperatures in excess of 230 °C produces results superior to those obtained using hot air. Fingermarks can also be developed in this way on other cellulose-based substrates such as wood and cotton fabric, though ridge detail is difficult to obtain in the latter case. Fluorescence spectroscopy indicates that the phenomena observed during the thermal development of fingermarks can be reproduced simply by heating untreated white copy paper or filter paper, or these papers treated with solutions of sodium chloride or alanine. There is no evidence to suggest that the observed fluorescence of fingermarks heated on paper is due to a reaction of fingermark constituents on or with the paper. Instead, we maintain that the ridge contrast observed first as fluorescence, and later as brown charring, is simply an acceleration of the thermal degradation of the paper. Thermal degradation of cellulose, a major constituent of paper and wood, is known to give rise to a fluorescent product if sufficient oxygen is available [1-5]. However, the absence of atmospheric oxygen has only a slight effect on the thermal development of fingermarks, indicating that there is sufficient oxygen already present in paper to allow the formation of the fluorescent and charred products. In a depletion study comparing thermal development of fingermarks on paper with development using ninhydrin, the thermal technique was found to be as sensitive as ninhydrin for six out of seven donors. When thermal development was used in sequence with ninhydrin and DFO, it was found that only fingermarks that had been developed to the fluorescent stage (a few seconds of heating) could subsequently be developed with the other reagents. In the reverse sequence, no useful further development was noted for fingermarks that were treated thermally after having been developed with ninhydrin or DFO. Aged fingermarks, including marks from 1-year-old university examination papers were successfully developed using the thermal technique. © 2010 Elsevier Ireland Ltd

    Mathematics for the exploration of requirements

    No full text
    The exploration of requirements is as complex as it is important in ensuring a successful software production and software life cycle. Increasingly, tool-support is available for aiding such explorations. We use a toy example and a case study of modelling and analysing some requirements of the global assembly cache of .NET to illustrate the opportunities and challenges that mathematically founded exploration of requirements brings to the computer science and software engineering curricula

    Black holes and a scalar field in an expanding universe

    Full text link
    We consider a model of an inhomogeneous universe including a massless scalar field, where the inhomogeneity is assumed to consist of many black holes. This model can be constructed by following Lindquist and Wheeler, which has already been investigated without including scalar field to show that an averaged scale factor coincides with that of the Friedmann model. In this work we construct the inhomogeneous universe with an massless scalar field, where we assume that the averaged scale factor and scalar field are given by those of the Friedmann model including a scalar field. All of our calculations are carried out in the framework of Brans-Dicke gravity. In constructing the model of an inhomogeneous universe, we define the mass of a black hole in the Brans-Dicke expanding universe which is equivalent to ADM mass if the mass evolves adiabatically, and obtain an equation relating our mass to the averaged scalar field and scale factor. As the results we find that the mass has an adiabatic time dependence in a sufficiently late stage of the expansion of the universe, and that the time dependence is qualitatively diffenrent according to the sign of the curvature of the universe: the mass increases decelerating in the closed universe case, is constant in the flat case and decreases decelerating in the open case. It is also noted that the mass in the Einstein frame depends on time. Our results that the mass has a time dependence should be retained even in the general scalar-tensor gravitiy with a scalar field potential. Furthermore, we discuss the relation of our results to the uniqueness theorem of black hole spacetime and gravitational memory effect.Comment: 16 pages, 3 tables, 5 figure

    Deforming the Maxwell-Sim Algebra

    Get PDF
    The Maxwell alegbra is a non-central extension of the Poincar\'e algebra, in which the momentum generators no longer commute, but satisfy [Pμ,Pν]=Zμν[P_\mu,P_\nu]=Z_{\mu\nu}. The charges ZμνZ_{\mu\nu} commute with the momenta, and transform tensorially under the action of the angular momentum generators. If one constructs an action for a massive particle, invariant under these symmetries, one finds that it satisfies the equations of motion of a charged particle interacting with a constant electromagnetic field via the Lorentz force. In this paper, we explore the analogous constructions where one starts instead with the ISim subalgebra of Poincar\'e, this being the symmetry algebra of Very Special Relativity. It admits an analogous non-central extension, and we find that a particle action invariant under this Maxwell-Sim algebra again describes a particle subject to the ordinary Lorentz force. One can also deform the ISim algebra to DISimb_b, where bb is a non-trivial dimensionless parameter. We find that the motion described by an action invariant under the corresponding Maxwell-DISim algebra is that of a particle interacting via a Finslerian modification of the Lorentz force.Comment: Appendix on Lifshitz and Schrodinger algebras adde

    Geometrical Ambiguity of Pair Statistics. I. Point Configurations

    Full text link
    Point configurations have been widely used as model systems in condensed matter physics, materials science and biology. Statistical descriptors such as the nn-body distribution function gng_n is usually employed to characterize the point configurations, among which the most extensively used is the pair distribution function g2g_2. An intriguing inverse problem of practical importance that has been receiving considerable attention is the degree to which a point configuration can be reconstructed from the pair distribution function of a target configuration. Although it is known that the pair-distance information contained in g2g_2 is in general insufficient to uniquely determine a point configuration, this concept does not seem to be widely appreciated and general claims of uniqueness of the reconstructions using pair information have been made based on numerical studies. In this paper, we introduce the idea of the distance space, called the D\mathbb{D} space. The pair distances of a specific point configuration are then represented by a single point in the D\mathbb{D} space. We derive the conditions on the pair distances that can be associated with a point configuration, which are equivalent to the realizability conditions of the pair distribution function g2g_2. Moreover, we derive the conditions on the pair distances that can be assembled into distinct configurations. These conditions define a bounded region in the D\mathbb{D} space. By explicitly constructing a variety of degenerate point configurations using the D\mathbb{D} space, we show that pair information is indeed insufficient to uniquely determine the configuration in general. We also discuss several important problems in statistical physics based on the D\mathbb{D} space.Comment: 28 pages, 8 figure

    Spherical Orbifolds for Cosmic Topology

    Full text link
    Harmonic analysis is a tool to infer cosmic topology from the measured astrophysical cosmic microwave background CMB radiation. For overall positive curvature, Platonic spherical manifolds are candidates for this analysis. We combine the specific point symmetry of the Platonic manifolds with their deck transformations. This analysis in topology leads from manifolds to orbifolds. We discuss the deck transformations of the orbifolds and give eigenmodes for the harmonic analysis as linear combinations of Wigner polynomials on the 3-sphere. These provide new tools for detecting cosmic topology from the CMB radiation.Comment: 17 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1011.427

    Sunlight and red to far-red ratio impact germination of tropical montane cloud forest species

    Get PDF
    Context: Australia’s tropical montane cloud forests (TMCF) exhibit exceptional species richness and endemism. Determinants of regeneration via seed of these species are next to unknown, limiting our ability to quantify and project their vulnerability to climate change. The ratio of red to far-red light (R:FR) has been shown to influence seed germination of many tropical species.Aims: We investigated germination of six previously unstudied TMCF species in relation to the presence or absence of light (light/dark) and light quality (R:FR). We hypothesised that increased R:FR would lead to increased germination and that small-seeded species would be more likely to have a light requirement and be less sensitive to R:FR compared to larger-seeded species.Methods: Sunlight and polyester filters were used to create a gradient of R:FR ranging from 0.1 to 1.14. Seeds were also sown in constant darkness.Key results: Across species we saw varying germination responses. Three of the four smallest-seeded species exhibited an absolute light requirement for germination and did not discriminate between different R:FR. Germination of the small-seeded TMCF endemic Dracophyllum increased exponentially with increasing R:FR. Germination of the largest-seeded species was inhibited by both low and high R:FR, and germination was higher in constant darkness than diurnal light/dark. All six species were able to germinate at remarkably low R:FR values.Conclusions: Light affects seed germination of Australia’s TMCF plant species in a variety of ways.Implications: The findings of this study provide insights into plant recruitment in situ, and the acclimation potential of these species under reduced R:FR predicted for the future

    Understanding seed dormancy and germination aids conservation of rainforest species from tropical montane cloud forest: a case study confirming morphophysiological dormancy in the genus Tasmannia

    Get PDF
    Context: Seed dormancy is one issue hindering implementation of conservation actions for rainforest species. Aims: We studied dormancy and germination in Tasmannia sp. Mt Bellenden Ker and Tasmannia membranea, two tropical montane rainforest species threatened by climate change, to develop a better understanding of dormancy in the species and the genus. Methods: Dormancy was classified for T. sp. Mt Bellenden Ker on the basis of an imbibition test, analysis of embryo to seed length (E:S) ratios and germination in response to the following four dormancy-breaking treatments: (I) scarification of the seedcoat near the micropylar end; (2) removal of the seedcoat; (3) application of 100 mg L(-1)or (4) 500 mg L-1 gibberellic acid. The most effective treatment was then tested on T. membranea. The requirement for light for germination was also assessed. Key results: Both scarified and intact seeds imbibed water. Initial E:S ratios were <0.22 for both species and increased up to 0.74 after 40 days, just before radicle emergence, for T. sp. Mt Bellenden Ker. Germination proportions were significantly higher in Treatments 1 and 2 than the remaining treatments for T. sp. Mt Bellenden Ker; T. membranea responded similarly well to Treatment 1. Germination under alternating light/dark conditions was slightly, but not significantly, greater than germination in the dark alone. Conclusions: Both species have morphophysiological dormancy and treatments that remove seedcoat resistance to embryo growth facilitate germination. These treatments may improve germination in other species from the genus Tasmannia. Implications: This knowledge will aid the germination of seeds to implement conservation strategies for Tasmannia spp
    • …
    corecore