986 research outputs found
Realizability of the Lorentzian (n,1)-Simplex
In a previous article [JHEP 1111 (2011) 072; arXiv:1108.4965] we have
developed a Lorentzian version of the Quantum Regge Calculus in which the
significant differences between simplices in Lorentzian signature and Euclidean
signature are crucial. In this article we extend a central result used in the
previous article, regarding the realizability of Lorentzian triangles, to
arbitrary dimension. This technical step will be crucial for developing the
Lorentzian model in the case of most physical interest: 3+1 dimensions.
We first state (and derive in an appendix) the realizability conditions on
the edge-lengths of a Lorentzian n-simplex in total dimension n=d+1, where d is
the number of space-like dimensions. We then show that in any dimension there
is a certain type of simplex which has all of its time-like edge lengths
completely unconstrained by any sort of triangle inequality. This result is the
d+1 dimensional analogue of the 1+1 dimensional case of the Lorentzian
triangle.Comment: V1: 15 pages, 2 figures. V2: Minor clarifications added to
Introduction and Discussion sections. 1 reference updated. This version
accepted for publication in JHEP. V3: minor updates and clarifications, this
version closely corresponds to the version published in JHE
Responsibility modelling for civil emergency planning
This paper presents a new approach to analysing and understanding civil emergency planning based on the notion of responsibility modelling combined with HAZOPS-style analysis of information requirements. Our goal is to represent complex contingency plans so that they can be more readily understood, so that inconsistencies can be highlighted and vulnerabilities discovered. In this paper, we outline the framework for contingency planning in the United Kingdom and introduce the notion of responsibility models as a means of representing the key features of contingency plans. Using a case study of a flooding emergency, we illustrate our approach to responsibility modelling and suggest how it adds value to current textual contingency plans
Historical roots of Agile methods: where did “Agile thinking” come from?
The appearance of Agile methods has been the most noticeable change to software process thinking in the last fifteen years [16], but in fact many of the “Agile ideas” have been around since 70’s or even before. Many studies and reviews have been conducted about Agile methods which ascribe their emergence as a reaction against traditional methods. In this paper, we argue that although Agile methods are new as a whole, they have strong roots in the history of software engineering. In addition to the iterative and incremental approaches that have been in use since 1957 [21], people who criticised the traditional methods suggested alternative approaches which were actually Agile ideas such as the response to change, customer involvement, and working software over documentation. The authors of this paper believe that education about the history of Agile thinking will help to develop better understanding as well as promoting the use of Agile methods. We therefore present and discuss the reasons behind the development and introduction of Agile methods, as a reaction to traditional methods, as a result of people's experience, and in particular focusing on reusing ideas from histor
Deforming the Maxwell-Sim Algebra
The Maxwell alegbra is a non-central extension of the Poincar\'e algebra, in
which the momentum generators no longer commute, but satisfy
. The charges commute with the momenta,
and transform tensorially under the action of the angular momentum generators.
If one constructs an action for a massive particle, invariant under these
symmetries, one finds that it satisfies the equations of motion of a charged
particle interacting with a constant electromagnetic field via the Lorentz
force. In this paper, we explore the analogous constructions where one starts
instead with the ISim subalgebra of Poincar\'e, this being the symmetry algebra
of Very Special Relativity. It admits an analogous non-central extension, and
we find that a particle action invariant under this Maxwell-Sim algebra again
describes a particle subject to the ordinary Lorentz force. One can also deform
the ISim algebra to DISim, where is a non-trivial dimensionless
parameter. We find that the motion described by an action invariant under the
corresponding Maxwell-DISim algebra is that of a particle interacting via a
Finslerian modification of the Lorentz force.Comment: Appendix on Lifshitz and Schrodinger algebras adde
Geometrical Ambiguity of Pair Statistics. I. Point Configurations
Point configurations have been widely used as model systems in condensed
matter physics, materials science and biology. Statistical descriptors such as
the -body distribution function is usually employed to characterize
the point configurations, among which the most extensively used is the pair
distribution function . An intriguing inverse problem of practical
importance that has been receiving considerable attention is the degree to
which a point configuration can be reconstructed from the pair distribution
function of a target configuration. Although it is known that the pair-distance
information contained in is in general insufficient to uniquely determine
a point configuration, this concept does not seem to be widely appreciated and
general claims of uniqueness of the reconstructions using pair information have
been made based on numerical studies. In this paper, we introduce the idea of
the distance space, called the space. The pair distances of a
specific point configuration are then represented by a single point in the
space. We derive the conditions on the pair distances that can be
associated with a point configuration, which are equivalent to the
realizability conditions of the pair distribution function . Moreover, we
derive the conditions on the pair distances that can be assembled into distinct
configurations. These conditions define a bounded region in the
space. By explicitly constructing a variety of degenerate point configurations
using the space, we show that pair information is indeed
insufficient to uniquely determine the configuration in general. We also
discuss several important problems in statistical physics based on the
space.Comment: 28 pages, 8 figure
On the bicrossproduct structures for the family of algebras
It is shown that the family of deformed algebras has a different bicrossproduct
structure for each in analogy to the undeformed case.Comment: Latex2e file. 14 page
Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media
To analyze seismic wave propagation in geological structures, it is possible
to consider various numerical approaches: the finite difference method, the
spectral element method, the boundary element method, the finite element
method, the finite volume method, etc. All these methods have various
advantages and drawbacks. The amplification of seismic waves in surface soil
layers is mainly due to the velocity contrast between these layers and,
possibly, to topographic effects around crests and hills. The influence of the
geometry of alluvial basins on the amplification process is also know to be
large. Nevertheless, strong heterogeneities and complex geometries are not easy
to take into account with all numerical methods. 2D/3D models are needed in
many situations and the efficiency/accuracy of the numerical methods in such
cases is in question. Furthermore, the radiation conditions at infinity are not
easy to handle with finite differences or finite/spectral elements whereas it
is explicitely accounted in the Boundary Element Method. Various absorbing
layer methods (e.g. F-PML, M-PML) were recently proposed to attenuate the
spurious wave reflections especially in some difficult cases such as shallow
numerical models or grazing incidences. Finally, strong earthquakes involve
nonlinear effects in surficial soil layers. To model strong ground motion, it
is thus necessary to consider the nonlinear dynamic behaviour of soils and
simultaneously investigate seismic wave propagation in complex 2D/3D geological
structures! Recent advances in numerical formulations and constitutive models
in such complex situations are presented and discussed in this paper. A crucial
issue is the availability of the field/laboratory data to feed and validate
such models.Comment: of International Journal Geomechanics (2010) 1-1
Spherical Orbifolds for Cosmic Topology
Harmonic analysis is a tool to infer cosmic topology from the measured
astrophysical cosmic microwave background CMB radiation. For overall positive
curvature, Platonic spherical manifolds are candidates for this analysis. We
combine the specific point symmetry of the Platonic manifolds with their deck
transformations. This analysis in topology leads from manifolds to orbifolds.
We discuss the deck transformations of the orbifolds and give eigenmodes for
the harmonic analysis as linear combinations of Wigner polynomials on the
3-sphere. These provide new tools for detecting cosmic topology from the CMB
radiation.Comment: 17 pages, 9 figures. arXiv admin note: substantial text overlap with
arXiv:1011.427
Graded contractions and bicrossproduct structure of deformed inhomogeneous algebras
A family of deformed Hopf algebras corresponding to the classical maximal
isometry algebras of zero-curvature N-dimensional spaces (the inhomogeneous
algebras iso(p,q), p+q=N, as well as some of their contractions) are shown to
have a bicrossproduct structure. This is done for both the algebra and, in a
low-dimensional example, for the (dual) group aspects of the deformation.Comment: LaTeX file, 20 pages. Trivial changes. To appear in J. Phys.
- …