986 research outputs found

    Realizability of the Lorentzian (n,1)-Simplex

    Full text link
    In a previous article [JHEP 1111 (2011) 072; arXiv:1108.4965] we have developed a Lorentzian version of the Quantum Regge Calculus in which the significant differences between simplices in Lorentzian signature and Euclidean signature are crucial. In this article we extend a central result used in the previous article, regarding the realizability of Lorentzian triangles, to arbitrary dimension. This technical step will be crucial for developing the Lorentzian model in the case of most physical interest: 3+1 dimensions. We first state (and derive in an appendix) the realizability conditions on the edge-lengths of a Lorentzian n-simplex in total dimension n=d+1, where d is the number of space-like dimensions. We then show that in any dimension there is a certain type of simplex which has all of its time-like edge lengths completely unconstrained by any sort of triangle inequality. This result is the d+1 dimensional analogue of the 1+1 dimensional case of the Lorentzian triangle.Comment: V1: 15 pages, 2 figures. V2: Minor clarifications added to Introduction and Discussion sections. 1 reference updated. This version accepted for publication in JHEP. V3: minor updates and clarifications, this version closely corresponds to the version published in JHE

    Responsibility modelling for civil emergency planning

    Get PDF
    This paper presents a new approach to analysing and understanding civil emergency planning based on the notion of responsibility modelling combined with HAZOPS-style analysis of information requirements. Our goal is to represent complex contingency plans so that they can be more readily understood, so that inconsistencies can be highlighted and vulnerabilities discovered. In this paper, we outline the framework for contingency planning in the United Kingdom and introduce the notion of responsibility models as a means of representing the key features of contingency plans. Using a case study of a flooding emergency, we illustrate our approach to responsibility modelling and suggest how it adds value to current textual contingency plans

    Historical roots of Agile methods: where did “Agile thinking” come from?

    No full text
    The appearance of Agile methods has been the most noticeable change to software process thinking in the last fifteen years [16], but in fact many of the “Agile ideas” have been around since 70’s or even before. Many studies and reviews have been conducted about Agile methods which ascribe their emergence as a reaction against traditional methods. In this paper, we argue that although Agile methods are new as a whole, they have strong roots in the history of software engineering. In addition to the iterative and incremental approaches that have been in use since 1957 [21], people who criticised the traditional methods suggested alternative approaches which were actually Agile ideas such as the response to change, customer involvement, and working software over documentation. The authors of this paper believe that education about the history of Agile thinking will help to develop better understanding as well as promoting the use of Agile methods. We therefore present and discuss the reasons behind the development and introduction of Agile methods, as a reaction to traditional methods, as a result of people's experience, and in particular focusing on reusing ideas from histor

    Deforming the Maxwell-Sim Algebra

    Get PDF
    The Maxwell alegbra is a non-central extension of the Poincar\'e algebra, in which the momentum generators no longer commute, but satisfy [Pμ,Pν]=Zμν[P_\mu,P_\nu]=Z_{\mu\nu}. The charges ZμνZ_{\mu\nu} commute with the momenta, and transform tensorially under the action of the angular momentum generators. If one constructs an action for a massive particle, invariant under these symmetries, one finds that it satisfies the equations of motion of a charged particle interacting with a constant electromagnetic field via the Lorentz force. In this paper, we explore the analogous constructions where one starts instead with the ISim subalgebra of Poincar\'e, this being the symmetry algebra of Very Special Relativity. It admits an analogous non-central extension, and we find that a particle action invariant under this Maxwell-Sim algebra again describes a particle subject to the ordinary Lorentz force. One can also deform the ISim algebra to DISimb_b, where bb is a non-trivial dimensionless parameter. We find that the motion described by an action invariant under the corresponding Maxwell-DISim algebra is that of a particle interacting via a Finslerian modification of the Lorentz force.Comment: Appendix on Lifshitz and Schrodinger algebras adde

    Geometrical Ambiguity of Pair Statistics. I. Point Configurations

    Full text link
    Point configurations have been widely used as model systems in condensed matter physics, materials science and biology. Statistical descriptors such as the nn-body distribution function gng_n is usually employed to characterize the point configurations, among which the most extensively used is the pair distribution function g2g_2. An intriguing inverse problem of practical importance that has been receiving considerable attention is the degree to which a point configuration can be reconstructed from the pair distribution function of a target configuration. Although it is known that the pair-distance information contained in g2g_2 is in general insufficient to uniquely determine a point configuration, this concept does not seem to be widely appreciated and general claims of uniqueness of the reconstructions using pair information have been made based on numerical studies. In this paper, we introduce the idea of the distance space, called the D\mathbb{D} space. The pair distances of a specific point configuration are then represented by a single point in the D\mathbb{D} space. We derive the conditions on the pair distances that can be associated with a point configuration, which are equivalent to the realizability conditions of the pair distribution function g2g_2. Moreover, we derive the conditions on the pair distances that can be assembled into distinct configurations. These conditions define a bounded region in the D\mathbb{D} space. By explicitly constructing a variety of degenerate point configurations using the D\mathbb{D} space, we show that pair information is indeed insufficient to uniquely determine the configuration in general. We also discuss several important problems in statistical physics based on the D\mathbb{D} space.Comment: 28 pages, 8 figure

    On the bicrossproduct structures for the Uλ(isoω2...ωN(N)){\cal U}_\lambda(iso_{\omega_2... \omega_N}(N)) family of algebras

    Full text link
    It is shown that the family of deformed algebras Uλ(isoω2...ωN(N)){\cal U}_\lambda(iso_{\omega_2... \omega_N}(N)) has a different bicrossproduct structure for each ωa=0\omega_a=0 in analogy to the undeformed case.Comment: Latex2e file. 14 page

    Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media

    Full text link
    To analyze seismic wave propagation in geological structures, it is possible to consider various numerical approaches: the finite difference method, the spectral element method, the boundary element method, the finite element method, the finite volume method, etc. All these methods have various advantages and drawbacks. The amplification of seismic waves in surface soil layers is mainly due to the velocity contrast between these layers and, possibly, to topographic effects around crests and hills. The influence of the geometry of alluvial basins on the amplification process is also know to be large. Nevertheless, strong heterogeneities and complex geometries are not easy to take into account with all numerical methods. 2D/3D models are needed in many situations and the efficiency/accuracy of the numerical methods in such cases is in question. Furthermore, the radiation conditions at infinity are not easy to handle with finite differences or finite/spectral elements whereas it is explicitely accounted in the Boundary Element Method. Various absorbing layer methods (e.g. F-PML, M-PML) were recently proposed to attenuate the spurious wave reflections especially in some difficult cases such as shallow numerical models or grazing incidences. Finally, strong earthquakes involve nonlinear effects in surficial soil layers. To model strong ground motion, it is thus necessary to consider the nonlinear dynamic behaviour of soils and simultaneously investigate seismic wave propagation in complex 2D/3D geological structures! Recent advances in numerical formulations and constitutive models in such complex situations are presented and discussed in this paper. A crucial issue is the availability of the field/laboratory data to feed and validate such models.Comment: of International Journal Geomechanics (2010) 1-1

    Spherical Orbifolds for Cosmic Topology

    Full text link
    Harmonic analysis is a tool to infer cosmic topology from the measured astrophysical cosmic microwave background CMB radiation. For overall positive curvature, Platonic spherical manifolds are candidates for this analysis. We combine the specific point symmetry of the Platonic manifolds with their deck transformations. This analysis in topology leads from manifolds to orbifolds. We discuss the deck transformations of the orbifolds and give eigenmodes for the harmonic analysis as linear combinations of Wigner polynomials on the 3-sphere. These provide new tools for detecting cosmic topology from the CMB radiation.Comment: 17 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1011.427

    Graded contractions and bicrossproduct structure of deformed inhomogeneous algebras

    Full text link
    A family of deformed Hopf algebras corresponding to the classical maximal isometry algebras of zero-curvature N-dimensional spaces (the inhomogeneous algebras iso(p,q), p+q=N, as well as some of their contractions) are shown to have a bicrossproduct structure. This is done for both the algebra and, in a low-dimensional example, for the (dual) group aspects of the deformation.Comment: LaTeX file, 20 pages. Trivial changes. To appear in J. Phys.
    • …
    corecore