12,532 research outputs found
A simple method for detecting chaos in nature
Chaos, or exponential sensitivity to small perturbations, appears everywhere
in nature. Moreover, chaos is predicted to play diverse functional roles in
living systems. A method for detecting chaos from empirical measurements should
therefore be a key component of the biologist's toolkit. But, classic
chaos-detection tools are highly sensitive to measurement noise and break down
for common edge cases, making it difficult to detect chaos in domains, like
biology, where measurements are noisy. However, newer tools promise to overcome
these limitations. Here, we combine several such tools into an automated
processing pipeline, and show that our pipeline can detect the presence (or
absence) of chaos in noisy recordings, even for difficult edge cases. As a
first-pass application of our pipeline, we show that heart rate variability is
not chaotic as some have proposed, and instead reflects a stochastic process in
both health and disease. Our tool is easy-to-use and freely available
A dynamical and kinematical model of the Galactic stellar halo and possible implications for galaxy formation scenarios
We re-analyse the kinematics of the system of blue horizontal branch field
(BHBF) stars in the Galactic halo (in particular the outer halo), fitting the
kinematics with the model of radial and tangential velocity dispersions in the
halo as a function of galactocentric distance r proposed by Sommer-Larsen,
Flynn & Christensen (1994), using a much larger sample (almost 700) of BHBF
stars. The basic result is that the character of the stellar halo velocity
ellipsoid changes markedly from radial anisotropy at the sun to tangential
anisotropy in the outer parts of the Galactic halo (r greater than approx 20
kpc). Specifically, the radial component of the stellar halo's velocity
ellipsoid decreases fairly rapidly beyond the solar circle, from approx 140 +/-
10 km/s at the sun, to an asymptotic value of 89 +/- 19 km/s at large r. The
rapid decrease in the radial velocity dispersion is matched by an increase in
the tangential velocity dispersion, with increasing r.
Our results may indicate that the Galaxy formed hierarchically (partly or
fully) through merging of smaller subsystems - the 'bottom-up' galaxy formation
scenario, which for quite a while has been favoured by most theorists and
recently also has been given some observational credibility by HST observations
of a potential group of small galaxies, at high redshift, possibly in the
process of merging to a larger galaxy (Pascarelle et al 1996).Comment: Latex, 16 pages. 2 postscript figures. Submitted to the Astrophysical
Journal. also available at http://astro.utu.fi/~cflynn/outerhalo.htm
- …