4 research outputs found

    Synthetic, structural, and spectroscopic studies of sterically crowded tin-chalcogen acenaphthenes

    Get PDF
    The work in this project was supported by the Engineering and Physical Sciences Research Council (EPSRC) and EaStCHEM.A series of sterically encumbered peri-substituted acenaphthenes have been prepared containing chalcogen and tin moieties at the close 5,6-positions (Acenap[SnPh3][ER], Acenap = acenaphthene-5,6-diyl, ER = SPh (1), SePh (2), TePh (3), SEt (4); Acenap[SnPh2Cl][EPh], E = S (5), Se (6); Acenap[SnBu2Cl][ER], ER = SPh(7), SePh (8), SEt (9)). Two geminally bis(peri-substituted) derivatives ({Acenap[SPh2]}2SnX2, X = Cl (10), Ph (11)) have also been prepared, along with the bromo–sulfur derivative Acenap(Br)(SEt) (15). All 11 chalcogen–tin compounds align a Sn–CPh/Sn–Cl bond along the mean acenaphthene plane and position a chalcogen lone pair in close proximity to the electropositive tin center, promoting the formation of a weakly attractive intramolecular donor–acceptor E···Sn–CPh/E···Sn–Cl 3c-4e type interaction. The extent of E→Sn bonding was investigated by X-ray crystallography and solution-state NMR and was found to be more prevalent in triorganotin chlorides 5–9 in comparison with triphenyltin derivatives 1–4. The increased Lewis acidity of the tin center resulting from coordination of a highly electronegative chlorine atom was found to greatly enhance the lp(E)−σ*(Sn–Y) donor–acceptor 3c-4e type interaction, with substantially shorter E–Sn peri distances observed in the solid state for triorganotin chlorides 5–9 (∼75% ∑rvdW) and significant 1J(119Sn,77Se) spin–spin coupling constants (SSCCs) observed for 6 (163 Hz) and 8 (143 Hz) in comparison to that for the triphenyltin derivative 2 (68 Hz). Similar observations were observed for geminally bis(peri-substituted) derivatives 10 and 11.PostprintPeer reviewe

    Sterically encumbered tin and phosphorus <i>peri</i>-substituted acenaphthenes

    No full text
    A group of sterically encumbered peri-substituted acenaphthenes have been prepared, containing tin moieties at the 5,6-positions in 1-3 ([Acenap(SnR )], Acenap = acenaphthene-5,6-diyl; R = Ph (1), Me (2); [(Acenap)(SnMe )] (3)) and phosphorus functional groups at the proximal peri-positions in 4 and 5 ([Acenap(PR)(PPr )] R = Ph (4), Ph(Pr) (5)). Bis(stannane) structures 1-3 are dominated by repulsive interactions between the bulky tin groups, leading to peri-distances approaching the sum of van der Waals radii. Conversely, the quasi-linear C-P⋯P three-body fragments found in bis(phosphine) 4 suggest the presence of a lp(P)-σ*(P-C) donor-acceptor 3c-4e type interaction, supported by a notably short intramolecular P⋯P distance and notably large J through-space coupling (180 Hz). Severely strained bis(sulfides) 4-S and 5-S, experiencing pronounced in-plane and out-of-plane displacements of the exocyclic peri-bonds, have also been isolated following treatment of 4 and 5 with sulfur. The resulting nonbonded intramolecular P⋯P distances, ∼4.05 Å and ∼12% longer than twice the van der Waals radii of P (3.60 Å), are among the largest ever reported peri-separations, independent of the heteroatoms involved, and comparable to the distance found in 1 containing the larger Sn atoms (4.07 Å). In addition we report two metal complexes with square planar [(4)PtCl] (4-Pt) and octahedral cis-[(4)Mo(CO)] (4-Mo) geometries. In both complexes the bis(phosphine) backbone is distorted, but notably less so than in bis(sulfide) 4-S. All compounds were fully characterized, and except for bis(phosphine) 5, crystal structures were determined

    Synthetic, Structural, and Spectroscopic Studies of Sterically Crowded Tin–Chalcogen Acenaphthenes

    No full text
    corecore