2,618 research outputs found

    The nature of the ISM in galaxies during the star-formation activity peak of the Universe

    Get PDF
    We combine a semi-analytic model of galaxy formation, tracking atomic and molecular phases of cold gas, with a three-dimensional radiative-transfer and line tracing code to study the sub-mm emission from atomic and molecular species (CO, HCN, [CI], [CII], [OI]) in galaxies. We compare the physics that drives the formation of stars at the epoch of peak star formation (SF) in the Universe (z = 2.0) with that in local galaxies. We find that normal star-forming galaxies at high redshift have much higher CO-excitation peaks than their local counterparts and that CO cooling takes place at higher excitation levels. CO line ratios increase with redshift as a function of galaxy star-formation rate, but are well correlated with H2 surface density independent of redshift. We find an increase in the [OI]/[CII] line ratio in typical star-forming galaxies at z = 1.2 and z = 2.0 with respect to counterparts at z = 0. Our model results suggest that typical star-forming galaxies at high redshift consist of much denser and warmer star-forming clouds than their local counterparts. Galaxies belonging to the tail of the SF activity peak at z = 1.2 are already less dense and cooler than counterparts during the actual peak of SF activity (z = 2.0). We use our results to discuss how future ALMA surveys can best confront our predictions and constrain models of galaxy formation.Comment: 19 pages, 14 figures, accepted for publication in MNRA

    Hierarchical Bayesian inference of the Initial Mass Function in Composite Stellar Populations

    Get PDF
    The initial mass function (IMF) is a key ingredient in many studies of galaxy formation and evolution. Although the IMF is often assumed to be universal, there is continuing evidence that it is not universal. Spectroscopic studies that derive the IMF of the unresolved stellar populations of a galaxy often assume that this spectrum can be described by a single stellar population (SSP). To alleviate these limitations, in this paper we have developed a unique hierarchical Bayesian framework for modelling composite stellar populations (CSPs). Within this framework we use a parameterized IMF prior to regulate a direct inference of the IMF. We use this new framework to determine the number of SSPs that is required to fit a set of realistic CSP mock spectra. The CSP mock spectra that we use are based on semi-analytic models and have an IMF that varies as a function of stellar velocity dispersion of the galaxy. Our results suggest that using a single SSP biases the determination of the IMF slope to a higher value than the true slope, although the trend with stellar velocity dispersion is overall recovered. If we include more SSPs in the fit, the Bayesian evidence increases significantly and the inferred IMF slopes of our mock spectra converge, within the errors, to their true values. Most of the bias is already removed by using two SSPs instead of one. We show that we can reconstruct the variable IMF of our mock spectra for signal-to-noise ratios exceeding \sim75.Comment: Accepted for publication in MNRAS, 16 pages, 8 figure

    The merger rate of massive galaxies

    Full text link
    We calculate the projected two point correlation function for samples of luminous and massive galaxies in the COMBO-17 photometric redshift survey, focusing particularly on the amplitude of the correlation function at small projected radii and exploring the constraints such measurements can place on the galaxy merger rate. For nearly volume-limited samples with 0.4<z<0.8, we find that 4+/-1% of luminous M_B<-20 galaxies are in close physical pairs (with real space separation of <30 proper kpc). The corresponding fraction for massive galaxies with M_*>2.5e10 M_sun is 5+/-1%. Incorporating close pair fractions from the literature, the 2dFGRS and the SDSS, we find a fairly rapid evolution of the merger fraction of massive galaxies between z=0.8 and the present day. Assuming that the major merger timescale is of order the dynamical timescale for close massive galaxy pairs, we tentatively infer that ~50% (70%) of all galaxies with present-day masses M_*>5e10 M_sun (remnants of mergers between galaxies with M_*>2.5e10 M_sun) have undergone a major merger since z=0.8(1): major mergers between massive galaxies are a significant driver of galaxy evolution over the last eight billion years.Comment: ApJ, in press. 8 pages, 3 figures. Expanded discussion section with explicit discussion of merger fraction vs. close pair fraction. Change of typical close pair timescale results in increased inferred merger rat

    The difference that tenure makes

    Get PDF
    This paper argues that housing tenures cannot be reduced to either production relations or consumption relations. Instead, they need to be understood as modes of housing distribution, and as having complex and dynamic relations with social classes. Building on a critique of both the productionist and the consumptionist literature, as well as of formalist accounts of the relations between tenure and class, the paper attempts to lay the foundations for a new theory of housing tenure. In order to do this, a new theory of class is articulated, which is then used to throw new light on the nature of class-tenure relations

    ATTENUATION CHANGES DURING OILFLOOD EXPERIMENTS

    Get PDF
    ABSTRACT Reservoir saturation changes can be detected by repeat 3-D seismic surveys. These rely on some seismic attribute such as travel time, amplitude or velocity changing with the change in saturation of either gas, oil or water. Rock physics measurements show that rocks with a high compliance or low stiffness have the greatest sensitivity of Vp to saturation changes. Stiff rocks may only exhibit small changes in Vp with saturation, which may be undetectable on repeat surveys. However other seismic attributes, such as signal amplitude may show large variations. In the experiments described here, the velocity and signal amplitude was measured in a stiff sandstone core during the replacement of brine with oil. During the experiment Vp changed by 1%, but the signal amplitude varied by over 200%. A 1% change in velocity is unlikely to be detectable in a repeat seismic survey since it causes a reservoir base shift of only 0.3ms for a 100m thick reservoir. However a 200% increase in amplitude may be detectable. The material used in the experiments was an aeolean sandstone known as Clashach sandstone, commonly used in rock physics as a North Sea reservoir analogue. The sandstone was from a surface deposit from a quarry in the NE of Scotland. Clashach sandstone has some variation in its properties but the samples tested had porosity of 13.5-14.5%, a permeability of 100-350mD and were strongly water wet with an Amott-Harvey index of 0.65-0.98. The material was stiff with a modulus of elasticity of 40-50GPa. The samples were initially vacuum saturated with brine, of density 1.067g/cc, then saturated under a high pore pressure of 13.8MPa (2000psi) to achieve 100% saturation. The cores were weighed prior to the experiment to confirm 100% saturation with brine. METHOD The experiments were performed in a Hoek cell, which applied realistic levels of insitu effective stress to the core. The platens of the Hoek cell were equipped with ultrasonic transducers, which were used to measure compression and shear wave velocity through the core during the experiments. The velocities were measured by the time taken for a pulse of ultrasonic waves to travel across the sample. The frequency of the waves was approximately 600kHz. Fluids can be flowed through the core under high stress and at high pore pressure to perform fluid substitutions. In these experiments a light oil with a density of ρ oil =0.76g/cc and a viscosity of 1.3cp was used as a flooding fluid. The brine filled cores were flooded with oil, the average saturation S w was calculated from the expelled fluids, which were collected in a separator vessel. The experiments were back to content

    The Evolution of the Optical and Near-Infrared Galaxy Luminosity Functions and Luminosity Densities to z~2

    Full text link
    Using Hubble Space Telescope and ground-based U through K- band photometry from the Great Observatories Origins Deep Survey (GOODS), we measure the evolution of the luminosity function and luminosity density in the rest-frame optical (UBR) to z ~ 2, bridging the poorly explored ``redshift desert'' between z~1 and z~2. We also use deep near-infrared observations to measure the evolution in the rest-frame J-band to z~1. Compared to local measurements from the SDSS, we find a brightening of the characteristic magnitude, (M*), by ~2.1, \~0.8 and ~0.7 mag between z=0.1 and z=1.9, in U, B, and R bands, respectively. The evolution of M* in the J-band is in the opposite sense, showing a dimming between redshifts z=0.4 and z=0.9. This is consistent with a scenario in which the mean star formation rate in galaxies was higher in the past, while the mean stellar mass was lower, in qualitative agreement with hierarchical galaxy formation models. We find that the shape of the luminosity function is strongly dependent on spectral type and that there is strong evolution with redshift in the relative contribution from the different spectral types to the luminosity density. We find good agreement in the luminosity function derived from an R-selected and a K-selected sample at z~1, suggesting that optically selected surveys of similar depth (R < 24) are not missing a significant fraction of objects at this redshift relative to a near-infrared-selected sample. We compare the rest-frame B-band luminosity functions from z~0--2 with the predictions of a semi-analytic hierarchical model of galaxy formation, and find qualitatively good agreement. In particular, the model predicts at least as many optically luminous galaxies at z~1--2 as are implied by our observations.Comment: 43 pages; 15 Figures; 5 Tables, Accepted for publication in Ap.
    corecore