61 research outputs found

    Bedside theatre performance and its effects on hospitalised children's well-being

    Get PDF
    This article reports on practice-based pilot research being undertaken at Birmingham Children's Hospital in England on the impact of bedside theatre performance on hospitalised children's well-being. It discusses the process of creating theatre for sick children, connecting with the hospital and working within the hospital tight routines, dealing with ethics, working with theatre artists and performing to children bedside. It also reports on evidence collected by questionnaire and interviews about the perceived benefits of bedside theatre by children and their parent/carers. This emphasis on the process is appropriate for theatre practitioners, arts therapists and clinical staff who work with hospitalised children

    Self-help interventions for anxiety disorders: An overview.

    Get PDF
    Anxiety disorders are highly prevalent and are associated with a marked impairment in quality of life and a huge economic cost to society. Unfortunately, a considerable number of people who struggle with anxiety do not seek or receive adequate treatment. Self-help interventions have been proposed to constitute a relatively cheap, effective, efficient, and low-threshold intervention for anxiety disorders. This paper offers a critical discussion of their advantages and disadvantages and the evidence for their effectiveness. We conclude that guided self-help can play a major role in mental health care for patients with anxiety disorders. However, several research questions need to be answered before broad-scale dissemination is possible. The Internet will continue to play a prominent role in the further development of this field of research and clinical practice

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Deaths and near deaths of healthy newborn infants while bed sharing on maternity wards

    No full text
    Letter to the EditorR L Somer

    Dog bites in Australian children

    No full text
    Letter to the EditorKatina D'Onise, Ronald L Somer

    Predictors for abnormal voiding cystourethrography in pediatric patients undergoing renal transplant evaluation

    No full text
    10.1034/j.1399-3046.2001.005002099.xPediatric Transplantation5299-104PETR

    Analysis and verification of an automatic document feeder

    No full text
    Modern copying machines are versatile and complex systems in which embedded software plays an essential role. The progress towards faster and more stable machines that can satisfy ever growing customers' needs, places strict requirements on the efficiency and quality of such software. In order to meet these requirements, the software should be well-designed and free of errors. Using modern formal verification techniques, software designs can be checked for errors and deadlocks so that their quality can be assessed and improved at an early stage of the development process. In this paper, we analyze the embedded software of an Automatic Document Feeder (ADF). ADFs are important components of copier machines. The ADF studied here is a prototype developed by Océ-Technologies B.V., a company that develops professional printing systems. We construct a model of the ADF in ”crl, a process algebra-based specification language, and express the system's requirements in the modal ”-calculus. Next, we use the ”crl and Cadp tool sets to check whether the system meets its requirements. This analysis reveals important errors in the ADF and we propose solutions to these problems. Also, we show that some requirements that engineers assumed to be valid, are too strict. We present slightly weaker versions of these requirements and show that these do hold. In this sense, in addition to finding errors in the ADF, our analysis also led to a better understanding of the behaviour the system
    • 

    corecore