9 research outputs found
MWCNTs-TiO2 incorporated-Mg composites to improve the mechanical, corrosion and biological characteristics for use in biomedical fields
This study attempts to synthesize MgZn/TiO2-MWCNTs composites with varying TiO2-MWCNT concentrations using mechanical alloying and a semi-powder metallurgy process coupled with spark plasma sintering. It also aims to investigate the mechanical, corrosion, and antibacterial properties of these composites. When compared to the MgZn composite, the microhardness and compressive strength of the MgZn/TiO2-MWCNTs composites were enhanced to 79 HV and 269 MPa, respectively. The results of cell culture and viability experiments revealed that incorporating TiO2-MWCNTs increased osteoblast proliferation and attachment and enhanced the biocompatibility of the TiO2-MWCNTs nanocomposite. It was observed that the corrosion resistance of the Mg-based composite was improved and the corrosion rate was reduced to about 2.1 mm/y with the addition of 10 wt% TiO2-1 wt% MWCNTs. In vitro testing for up to 14 days revealed a reduced degradation rate following the incorporation of TiO2-MWCNTs reinforcement into a MgZn matrix alloy. Antibacterial evaluations revealed that the composite had antibacterial activity, with an inhibition zone of 3.7 mm against Staphylococcus aureus. The MgZn/TiO2-MWCNTs composite structure has great potential for use in orthopedic fracture fixation devices
Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: A comprehensive review
In recent years considerable attention has been attracted to magnesium because of its light weight, high specific strength, and ease of recycling. Because of the growing demand for lightweight materials in aerospace, medical and automotive industries, magnesium-based metal matrix nanocomposites (MMNCs) reinforced with ceramic nanometer-sized particles, graphene nanoplatelets (GNPs) or carbon nanotubes (CNTs) were developed. CNTs have excellent material characteristics like low density, high tensile strength, high ratio of surface-to-volume, and high thermal conductivity that makes them attractive to use as reinforcements to fabricate high-performance, and high-strength metal-matrix composites (MMCs). Reinforcing magnesium (Mg) using small amounts of CNTs can improve the mechanical and physical properties in the fabricated lightweight and high-performance nanocomposite. Nevertheless, the incorporation of CNTs into a Mg-based matrix faces some challenges, and a uniform distribution is dependent on the parameters of the fabricating process. The characteristics of a CNTs reinforced composite are related to the uniform distribution, weight percent, and length of the CNTs, as well as the interfacial bonding and alignment between CNTs reinforcement and the Mg-based matrix. In this review article, the recent findings in the fabricating methods, characterization of the composite’s properties, and application of Mg-based composites reinforced with CNTs are studied. These include the strategies of fabricating CNT-reinforced Mg-based composites, mechanical responses, and corrosion behaviors. The present review aims to investigate and conclude the most relevant studies conducted in the field of Mg/CNTs composites. Strategies to conquer complicated challenges are suggested and potential fields of Mg/CNTs composites as upcoming structural material regarding functional requirements in aerospace, medical and automotive industries are particularly presented
A comprehensive review on surface modifications of biodegradable magnesium-based implant alloy: polymer coatings opportunities and challenges
The development of biodegradable implants is certainly intriguing, and magnesium and its alloys are considered significant among the various biodegradable materials. Nevertheless, the fast degradation, the generation of a significant amount of hydrogen gas, and the escalation in the pH value of the body solution are significant barriers to their use as an implant material. The appropriate approach is able to solve this issue, resulting in a decrease the rate of Mg degradation, which can be accomplished by alloying, surface adjustment, and mechanical treatment. Surface modification is a practical option because it not only improves corrosion resistance but also prepares a treated surface to improve bone regeneration and cell attachment. Metal coatings, ceramic coatings, and permanent polymers were shown to minimize degradation rates, but inflammation and foreign body responses were also suggested. In contrast to permanent materials, the bioabsorbable polymers normally show the desired biocompatibility. In order to improve the performance of drugs, they are generally encapsulated in biodegradable polymers. This study summarized the most recent advancements in manufacturing polymeric coatings on Mg alloys. The related corrosion resistance enhancement strategies and future potentials are discussed. Ultimately, the major challenges and difficulties are presented with aim of the development of polymer-coated Mg-based implant materials
Reduced graphene oxide (RGO) reinforced Mg biocomposites for use as orthopedic applications: Mechanical properties, cytocompatibility and antibacterial activity
Magnesium (Mg) has attracted wide interest in orthopedic applications as they exhibit great biodegradability and strong biocompatibility, while corrosion is the main concern for Mg that should be addressed prior to biomedical applications. In this work, ZM31 (Mg-3Zn-1Mn)/xRGO (x = 0, 0.5, 1 and 1.5 wt%) biocomposites were synthesized by semi-powder metallurgy method. The results showed that the RGO acting as an effective reinforcing filler to prevent deformation and showed better compressive strength (282.3 ± 9 MPa) and revealed enhancement in failure Strain (7.8 ± 2.1%) at 1 wt% RGO concentration compared to Mg alloy (244.5 ± 9 MPa and 7.1 ± 1.5% respectively). Moreover, fracture analysis indicated a more ductile fracture of the nanocomposites after the incorporation of RGO. Crack bridging, crack deflection and crack branching are dominant mechanisms for reinforcement of Mg-based containing RGO. Mg composites containing 0.5 wt% RGO showed a low corrosion rate (2.75 mm/year), while more incorporation of RGO resulted in an increased corrosion rate (4.38 mm/year). In addition, the degradation rate of ZM31 alloy (2.57 mg·cm−2·d−1) obviously decreased with the addition of 0.5 wt% RGO (1.84 mg·cm−2·d−1) in the SBF. Besides, continuous apatite layers were created on the composites in the SBF solution. Also, the cell culture examinations showed good cell viability and adhesion on composites with 0.5 and 1 wt% RGO, which was demonstrated by the SEM and MTT assay The alkaline phosphatase (ALP) activity of the ZM3–0.5RGO composite was considerably higher than that of ZM31 matrix alloy in 24 h and 48 h, implying higher osteoblastic differentiation. The antibacterial behavior toward both bacteria (E. coli and S. aureus) exhibited that escalating RGO concentration in Mg-matrix composites leads to further inhibition of bacteria growth. These findings suggested that ZM31–0.5RGO biocomposite could be a more promising candidate for orthopedic implants
Graphene Family Nanomaterial Reinforced Magnesium-Based Matrix Composites for Biomedical Application: A Comprehensive Review
Together with the enhancement of the load-bearing implant process for bone substitution and reproduction, an increasing requirement was observed concerning biodegradable magnesium and its alloys with lighter density and outstanding characteristics. Regardless of the current great potential of Mg utilization currently, the broader use of Mg alloys continues to be constrained by several natural causes, such as low resistance of corrosion, inadequate mechanical integrity during the healing process, and poor antibacterial performance. In this perspective, Mg-based composite encapsulated within graphene family nanomaterials (GFNs) such as graphene (Gr), graphene oxide (GO), graphene nanoplatelets (GNPs), and reduced graphene oxide (rGO) as reinforcement agents present great antibacterial activity, as well as cellular response and depicted numerous benefits for biomedical use. Magnesium matrix nanocomposites reinforced with GFNs possess enhanced mechanical properties and high corrosion resistance (low concentration graphene). It is worth noting that numerous elements including the production technique of the Mg-based composite containing GFNs and the size, distribution, and amounts of GFNs in the Mg-based matrix have a crucial role in their properties and applications. Then, the antibacterial mechanisms of GFN-based composite are briefly described. Subsequently, the antibacterial and strengthening mechanisms of GFN-embedded Mg-based composites are briefly described. This review article is designed to wrap up and explore the most pertinent research performed in the direction of Mg-based composites encapsulated within GFNs. Feasible upcoming investigation directions in the field of GFN-embedded Mg-based composites are discussed in detail
Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: A comprehensive review
In recent years considerable attention has been attracted to magnesium because of its light weight, high specific strength, and ease of recycling. Because of the growing demand for lightweight materials in aerospace, medical and automotive industries, magnesium-based metal matrix nanocomposites (MMNCs) reinforced with ceramic nanometer-sized particles, graphene nanoplatelets (GNPs) or carbon nanotubes (CNTs) were developed. CNTs have excellent material characteristics like low density, high tensile strength, high ratio of surface-to-volume, and high thermal conductivity that makes them attractive to use as reinforcements to fabricate high-performance, and high-strength metal-matrix composites (MMCs). Reinforcing magnesium (Mg) using small amounts of CNTs can improve the mechanical and physical properties in the fabricated lightweight and high-performance nanocomposite. Nevertheless, the incorporation of CNTs into a Mg-based matrix faces some challenges, and a uniform distribution is dependent on the parameters of the fabricating process. The characteristics of a CNTs reinforced composite are related to the uniform distribution, weight percent, and length of the CNTs, as well as the interfacial bonding and alignment between CNTs reinforcement and the Mg-based matrix. In this review article, the recent findings in the fabricating methods, characterization of the composite’s properties, and application of Mg-based composites reinforced with CNTs are studied. These include the strategies of fabricating CNT-reinforced Mg-based composites, mechanical responses, and corrosion behaviors. The present review aims to investigate and conclude the most relevant studies conducted in the field of Mg/CNTs composites. Strategies to conquer complicated challenges are suggested and potential fields of Mg/CNTs composites as upcoming structural material regarding functional requirements in aerospace, medical and automotive industries are particularly presented