350 research outputs found

    Wigner crystallization in Na(3)Cu(2)O(4) and Na(8)Cu(5)O(10) chain compounds

    Full text link
    We report the synthesis of novel edge-sharing chain systems Na(3)Cu(2)O(4) and Na(8)Cu(5)O(10), which form insulating states with commensurate charge order. We identify these systems as one-dimensional Wigner lattices, where the charge order is determined by long-range Coulomb interaction and the number of holes in the d-shell of Cu. Our interpretation is supported by X-ray structure data as well as by an analysis of magnetic susceptibility and specific heat data. Remarkably, due to large second neighbor Cu-Cu hopping, these systems allow for a distinction between the (classical) Wigner lattice and the 4k_F charge-density wave of quantum mechanical origin.Comment: 4 pages, 4 figure

    Looking into the hearts of native peoples: nation building as an institutional orientation for graduate education

    Get PDF
    In this article, we suggest that graduate programs in predominantly white institutions can and should be sites of self-education and tribal nation building. In arguing this, we examine how a particular graduate program and the participants of that program engaged tribal nation building, and then we suggest that graduate education writ large must also adopt an institutional orientation of nation building. We connect Guinier's notion of democratic merit to our discussion of nation building as a way to suggest a rethinking of "success" and "merit" in graduate education. We argue that higher education should be centrally concerned with capacity building and graduates who aim to serve their communities

    Field-theoretical renormalization group for a flat two-dimensional Fermi surface

    Full text link
    We implement an explicit two-loop calculation of the coupling functions and the self-energy of interacting fermions with a two-dimensional flat Fermi surface in the framework of the field theoretical renormalization group (RG) approach. Throughout the calculation both the Fermi surface and the Fermi velocity are assumed to be fixed and unaffected by interactions. We show that in two dimensions, in a weak coupling regime, there is no significant change in the RG flow compared to the well-known one-loop results available in the literature. However, if we extrapolate the flow to a moderate coupling regime there are interesting new features associated with an anisotropic suppression of the quasiparticle weight Z along the Fermi surface, and the vanishing of the renormalized coupling functions for several choices of the external momenta.Comment: 16 pages and 22 figure

    Spin Gap and Superconductivity in Weakly Coupled Ladders: Interladder One-particle vs. Two-particle Crossover

    Full text link
    Effects of the interladder one-particle hopping, tt_{\perp}, on the low-energy asymptotics of a weakly coupled Hubbard ladder system have been studied, based on the perturbative renormalization-group approach. We found that for finite intraladder Hubbard repulsion, UU, there exists a crossover value of the interladder one-particle hopping, tct_{\perp c}. For 0<t<tc0<t_{\perp}<t_{\perp c}, the spin gap metal (SGM) phase of the isolated ladder transits at a finite transition temperature, TcT_{c}, to the d-wave superconducting (SCd) phase via a two-particle crossover. In the temperature region, T<TcT<T_{c}, interladder coherent Josephson tunneling of the Cooper pairs occurs, while the interladder coherent one-particle process is strongly suppressed. For tc<tt_{\perp c}<t_{\perp}, around a crossover temperature, TcrossT_{cross}, the system crosses over to the two-dimensional (2D) phase via a one-particle crossover. In the temperature region, T<TcrossT<T_{cross}, the interladdercoherent band motion occurs.Comment: 4 pages, 5 eps figures, uses jpsj.st

    Quasi-Particles in Two-Dimensional Hubbard Model: Splitting of Spectral Weight

    Full text link
    It is shown that the energy (ε)(\varepsilon) and momentum (k)(k) dependences of the electron self-energy function Σ(k,ε+i0)ΣR(k,ε) \Sigma (k, \varepsilon + i0) \equiv \Sigma^{R}(k, \varepsilon) are, ImΣR(k,ε)=aε2εξkγ(k) {\rm Im} \Sigma^{R} (k, \varepsilon) = -a\varepsilon^{2}|\varepsilon - \xi_{k}|^{- \gamma (k)} where aa is some constant, ξk=ε(k)μ,ε(k)\xi_{k} = \varepsilon(k)-\mu, \varepsilon(k) being the band energy, and the critical exponent γ(k) \gamma(k) , which depends on the curvature of the Fermi surface at k k , satisfies, 0γ(k)1 0 \leq \gamma(k) \leq 1 . This leads to a new type of electron liquid, which is the Fermi liquid in the limit of ε,ξk0 \varepsilon, \xi_{k} \rightarrow 0 but for ξk0 \xi_{k} \neq 0 has a split one-particle spectra as in the Tomonaga-Luttinger liquid.Comment: 8 pages (LaTeX) 4 figures available upon request will be sent by air mail. KomabaCM-preprint-O

    Charge-density waves in the Hubbard chain: evidence for 4k_F instability

    Full text link
    Charge density waves in the Hubbard chain are studied by means of finite-temperature Quantum Monte Carlo simulations and Lanczos diagonalizations for the ground state. We present results both for the charge susceptibilities and for the charge structure factor at densities \rho=1/6 and 1/3; for \rho=1/2 (quarter filled) we only present results for the charge structure factor. The data are consistent with a 4k_F instability dominating over the 2k_F one, at least for sufficiently large values of the Coulomb repulsion, U. This can only be reconciled with the Luttinger liquid analyses if the amplitude of the 2k_F contribution vanishes above some U^*(\rho).Comment: RevTeX, 4 two-column pages with 7 colour figures embedded in tex

    Superconductivity of the One-Dimensional d-p Model with p-p transfer

    Full text link
    Using the numerical diagonalization method, we investigate the one-dimensional dd-pp model, simulating a Cu-O linear chain with strong Coulomb repulsions. Paying attention to the effect of the transfer energy tppt_{pp} between the nearest neighbor oxygen-sites, we calculate the critical exponent of correlation functions KρK_{\rho} based on the Luttinger liquid relations and the ground state energy E0(ϕ)E_0(\phi) as a function of an external flux ϕ\phi. We find that the transfer tppt_{pp} increases the charge susceptibility and the exponent KρK_{\rho} in cooperation with the repulsion UdU_{d} at Cu-site. We also show that anomalous flux quantization occurs for Kρ>1K_{\rho}>1. The superconducting region is presented on a phase diagram of UdU_{d} vs. tppt_{pp} plane.Comment: 4 pages, RevTex + 5 PS figures include

    Renormalization Group and Asymptotic Spin--Charge separation for Chiral Luttinger liquids

    Full text link
    The phenomenon of Spin-Charge separation in non-Fermi liquids is well understood only in certain solvable d=1 fermionic systems. In this paper we furnish the first example of asymptotic Spin-Charge separation in a d=1 non solvable model. This goal is achieved using Renormalization Group approach combined with Ward-Identities and Schwinger-Dyson equations, corrected by the presence of a bandwidth cut-offs. Such methods, contrary to bosonization, could be in principle applied also to lattice or higher dimensional systems.Comment: 45 pages, 11 figure

    Interacting Electrons on a Square Fermi Surface

    Full text link
    Electronic states near a square Fermi surface are mapped onto quantum chains. Using boson-fermion duality on the chains, the bosonic part of the interaction is isolated and diagonalized. These interactions destroy Fermi liquid behavior. Non-boson interactions are also generated by this mapping, and give rise to a new perturbation theory about the boson problem. A case with strong repulsions between parallel faces is studied and solved. There is spin-charge separation and the square Fermi surface remains square under doping. At half-filling, there is a charge gap and insulating behavior together with gapless spin excitations. This mapping appears to be a general tool for understanding the properties of interacting electrons on a square Fermi surface.Comment: 25 pages, Nordita preprint 94/22

    Nonequilibrium Electron Distribution in Presence of Kondo Impurities

    Full text link
    We study the energy relaxation of quasiparticles in voltage biased mesoscopic wires in presence of magnetic impurities. The renormalization of the exchange interaction of Kondo impurities coupled to conduction electrons is extended to the case of a nonequilibrium electron distribution, which is determined self-consistently from a Boltzmann equation with a collision term due to Kondo impurity mediated electron-electron scattering. The approach leads to predictions in quantitative agreement with recent experiments by Pothier et al. [Phys. Rev. Lett. 79, 3490 (1997)].Comment: 4 pages, 3 figure
    corecore