350 research outputs found
Wigner crystallization in Na(3)Cu(2)O(4) and Na(8)Cu(5)O(10) chain compounds
We report the synthesis of novel edge-sharing chain systems Na(3)Cu(2)O(4)
and Na(8)Cu(5)O(10), which form insulating states with commensurate charge
order. We identify these systems as one-dimensional Wigner lattices, where the
charge order is determined by long-range Coulomb interaction and the number of
holes in the d-shell of Cu. Our interpretation is supported by X-ray structure
data as well as by an analysis of magnetic susceptibility and specific heat
data. Remarkably, due to large second neighbor Cu-Cu hopping, these systems
allow for a distinction between the (classical) Wigner lattice and the 4k_F
charge-density wave of quantum mechanical origin.Comment: 4 pages, 4 figure
Looking into the hearts of native peoples: nation building as an institutional orientation for graduate education
In this article, we suggest that graduate programs in predominantly white institutions can and should be sites of self-education and tribal nation building. In arguing this, we examine how a particular graduate program and the participants of that program engaged tribal nation building, and then we suggest that graduate education writ large must also adopt an institutional orientation of nation building. We connect Guinier's notion of democratic merit to our discussion of nation building as a way to suggest a rethinking of "success" and "merit" in graduate education. We argue that higher education should be centrally concerned with capacity building and graduates who aim to serve their communities
Field-theoretical renormalization group for a flat two-dimensional Fermi surface
We implement an explicit two-loop calculation of the coupling functions and
the self-energy of interacting fermions with a two-dimensional flat Fermi
surface in the framework of the field theoretical renormalization group (RG)
approach. Throughout the calculation both the Fermi surface and the Fermi
velocity are assumed to be fixed and unaffected by interactions. We show that
in two dimensions, in a weak coupling regime, there is no significant change in
the RG flow compared to the well-known one-loop results available in the
literature. However, if we extrapolate the flow to a moderate coupling regime
there are interesting new features associated with an anisotropic suppression
of the quasiparticle weight Z along the Fermi surface, and the vanishing of the
renormalized coupling functions for several choices of the external momenta.Comment: 16 pages and 22 figure
Spin Gap and Superconductivity in Weakly Coupled Ladders: Interladder One-particle vs. Two-particle Crossover
Effects of the interladder one-particle hopping, , on the
low-energy asymptotics of a weakly coupled Hubbard ladder system have been
studied, based on the perturbative renormalization-group approach. We found
that for finite intraladder Hubbard repulsion, , there exists a crossover
value of the interladder one-particle hopping, . For
, the spin gap metal (SGM) phase of the isolated
ladder transits at a finite transition temperature, , to the d-wave
superconducting (SCd) phase via a two-particle crossover. In the temperature
region, , interladder coherent Josephson tunneling of the Cooper pairs
occurs, while the interladder coherent one-particle process is strongly
suppressed. For , around a crossover temperature,
, the system crosses over to the two-dimensional (2D) phase via a
one-particle crossover. In the temperature region, , the
interladdercoherent band motion occurs.Comment: 4 pages, 5 eps figures, uses jpsj.st
Quasi-Particles in Two-Dimensional Hubbard Model: Splitting of Spectral Weight
It is shown that the energy and momentum dependences of
the electron self-energy function are, where is some
constant, being the band energy,
and the critical exponent , which depends on the curvature of the
Fermi surface at , satisfies, . This leads to a
new type of electron liquid, which is the Fermi liquid in the limit of but for has a split
one-particle spectra as in the Tomonaga-Luttinger liquid.Comment: 8 pages (LaTeX) 4 figures available upon request will be sent by air
mail. KomabaCM-preprint-O
Charge-density waves in the Hubbard chain: evidence for 4k_F instability
Charge density waves in the Hubbard chain are studied by means of
finite-temperature Quantum Monte Carlo simulations and Lanczos diagonalizations
for the ground state. We present results both for the charge susceptibilities
and for the charge structure factor at densities \rho=1/6 and 1/3; for \rho=1/2
(quarter filled) we only present results for the charge structure factor. The
data are consistent with a 4k_F instability dominating over the 2k_F one, at
least for sufficiently large values of the Coulomb repulsion, U. This can only
be reconciled with the Luttinger liquid analyses if the amplitude of the 2k_F
contribution vanishes above some U^*(\rho).Comment: RevTeX, 4 two-column pages with 7 colour figures embedded in tex
Superconductivity of the One-Dimensional d-p Model with p-p transfer
Using the numerical diagonalization method, we investigate the
one-dimensional - model, simulating a Cu-O linear chain with strong
Coulomb repulsions. Paying attention to the effect of the transfer energy
between the nearest neighbor oxygen-sites, we calculate the critical
exponent of correlation functions based on the Luttinger liquid
relations and the ground state energy as a function of an external
flux . We find that the transfer increases the charge
susceptibility and the exponent in cooperation with the repulsion
at Cu-site. We also show that anomalous flux quantization occurs for
. The superconducting region is presented on a phase diagram of
vs. plane.Comment: 4 pages, RevTex + 5 PS figures include
Renormalization Group and Asymptotic Spin--Charge separation for Chiral Luttinger liquids
The phenomenon of Spin-Charge separation in non-Fermi liquids is well
understood only in certain solvable d=1 fermionic systems. In this paper we
furnish the first example of asymptotic Spin-Charge separation in a d=1 non
solvable model. This goal is achieved using Renormalization Group approach
combined with Ward-Identities and Schwinger-Dyson equations, corrected by the
presence of a bandwidth cut-offs. Such methods, contrary to bosonization, could
be in principle applied also to lattice or higher dimensional systems.Comment: 45 pages, 11 figure
Interacting Electrons on a Square Fermi Surface
Electronic states near a square Fermi surface are mapped onto quantum chains.
Using boson-fermion duality on the chains, the bosonic part of the interaction
is isolated and diagonalized. These interactions destroy Fermi liquid behavior.
Non-boson interactions are also generated by this mapping, and give rise to a
new perturbation theory about the boson problem. A case with strong repulsions
between parallel faces is studied and solved. There is spin-charge separation
and the square Fermi surface remains square under doping. At half-filling,
there is a charge gap and insulating behavior together with gapless spin
excitations. This mapping appears to be a general tool for understanding the
properties of interacting electrons on a square Fermi surface.Comment: 25 pages, Nordita preprint 94/22
Nonequilibrium Electron Distribution in Presence of Kondo Impurities
We study the energy relaxation of quasiparticles in voltage biased mesoscopic
wires in presence of magnetic impurities. The renormalization of the exchange
interaction of Kondo impurities coupled to conduction electrons is extended to
the case of a nonequilibrium electron distribution, which is determined
self-consistently from a Boltzmann equation with a collision term due to Kondo
impurity mediated electron-electron scattering. The approach leads to
predictions in quantitative agreement with recent experiments by Pothier et al.
[Phys. Rev. Lett. 79, 3490 (1997)].Comment: 4 pages, 3 figure
- …
