57 research outputs found

    High-throughput assessment of the antibody profile in ovarian cancer ascitic fluids

    Get PDF
    The identification of effective biomarkers for early diagnosis, prognosis, and response to treatments remains a challenge in ovarian cancer (OC) research. Here, we present an unbiased high-throughput approach to profile ascitic fluid autoantibodies in order to obtain a tumor-specific antigen signature in OC. We first reported the reactivity of immunoglobulins (Igs) purified from OC patient ascites towards two different OC cell lines. Using a discovery set of Igs, we selected tumor-specific antigens from a phage display cDNA library. After biopanning, 700 proteins were expressed as fusion protein and used in protein array to enable large-scale immunoscreening with independent sets of cancer and noncancerous control. Finally, the selected antigens were validated by ELISA. The initial screening identified eight antigenic clones: CREB3, MRPL46, EXOSC10, BCOR, HMGN2, HIP1R, OLFM4, and KIAA1755. These antigens were all validated by ELISA in a study involving ascitic Igs from 153 patients (69 with OC, 34 with other cancers and 50 without cancer), with CREB3 showing the highest sensitivity (86.95%) and specificity (98%). Notably, we were able to identify an association between the tumor-associated (TA) antibody response and the response to a first-line tumor treatment (platinum-based chemotherapy). A stronger association was found by combining three antigens (BCOR, CREB3, and MRLP46) as a single antibody signature. Measurement of an ascitic fluid antibody response to multiple TA antigens may aid in the identification of new prognostic signatures in OC patients and shift attention to new potentially relevant targets

    Synthesis and Evaluation of 99mTc-Labelled Monoclonal Antibody 1D09C3 for Molecular Imaging of Major Histocompatibility Complex Class II Protein Expression

    Get PDF
    Purpose: It is known that major histocompatibility complex class II protein HLA-DR is highly expressed in B-cell lymphomas and in a variety of autoimmune and inflammatory diseases. Therefore, a radiolabelled fully humanized IgG4 monoclonal antibody (mAb) can provide useful prognostic and diagnostic information. Aims of the present study were to radiolabel an anti-HLA-DR mAb with technetium-99m and to evaluate its binding specificity, tissue distribution and targeting potential. Procedures: For labelling, we compared a direct method, after 2-mercaptoethanol (2-ME) reduction of disulphide bonds, with a two-step labelling method, using a heterobifunctional succinimidyl-6-hydrazinonicotinate hydrochloride chelator. Several in vitro quality controls and in vivo experiments in mice were performed. Results: We obtained highest labelling efficiency (LE, 998%) and specific activity (SA; 5,550 MBq/mg) via the direct method. In vitro quality control showed good stability, structural integrity and retention of the binding properties of the labelled mAb. The biodistribution in mice showed high and persistent uptake in spleen and suggests kidney and liver-mediated clearanc

    Thyroid Cancer Imaging In Vivo by Targeting the Anti-Apoptotic Molecule Galectin-3

    Get PDF
    Background The prevalence of thyroid nodules increases with age, average 4-7% for the U.S.A. adult population, but it is much higher (19-67%) when sub-clinical nodules are considered. About 90% of these lesions are benign and a reliable approach to their preoperative characterization is necessary. Unfortunately conventional thyroid scintigraphy does not allow the distinction among benign and malignant thyroid proliferations but it provides only functional information (cold or hot nodules). The expression of the anti-apoptotic molecule galectin-3 is restricted to cancer cells and this feature has potential diagnostic and therapeutic implications. We show here the possibility to obtain thyroid cancer imaging in vivo by targeting galectin-3. Methods The galectin-3 based thyroid immuno-scintigraphy uses as radiotracer a specific 99mTc-radiolabeled mAb. A position-sensitive high-resolution mini-gamma camera was used as imaging capture device. Human galectin-3 positive thyroid cancer xenografts (ARO) and galectin-3 knockout tumors were used as targets in different experiments in vivo. 38 mice with tumor mass of about 1 gm were injected in the tail vein with 100 ?Ci of 99mTc-labeled mAb to galectin-3 (30 ?g protein/in 100 ?l saline solution). Tumor images were acquired at 1 hr, 3 hrs, 6 hrs, 9 hrs and 24 hrs post injection by using the mini-gamma camera. Findings Results from different consecutive experiments show an optimal visualization of thyroid cancer xenografts between 6 and 9 hours from injection of the radiotracer. Galectin-3 negative tumors were not detected at all. At 6 hrs post-injection galectin-3 expressing tumors were correctly visualized, while the whole-body activity had essentially cleared. Conclusions These results demonstrate the possibility to distinguish preoperatively benign from malignant thyroid nodules by using a specific galectin-3 radio-immunotargeting. In vivo imaging of thyroid cancer may allow a better selection of patients referred to surgery. The possibility to apply this method for imaging and treatment of other galectin-3 expressing tumors is also discussed

    FMR1 deletion in rats induces hyperactivity with no changes in striatal dopamine transporter availability

    No full text
    Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental disorder emerging in early life characterized by impairments in social interaction, poor verbal and non-verbal communication, and repetitive patterns of behaviors. Among the best-known genetic risk factors for ASD, there are mutations causing the loss of the Fragile X Messenger Ribonucleoprotein 1 (FMRP) leading to Fragile X syndrome (FXS), a common form of inherited intellectual disability and the leading monogenic cause of ASD. Being a pivotal regulator of motor activity, motivation, attention, and reward processing, dopaminergic neurotransmission has a key role in several neuropsychiatric disorders, including ASD. Fmr1Δexon 8 rats have been validated as a genetic model of ASD based on FMR1 deletion, and they are also a rat model of FXS. Here, we performed behavioral, biochemical and in vivo SPECT neuroimaging experiments to investigate whether Fmr1Δexon 8 rats display ASD-like repetitive behaviors associated with changes in striatal dopamine transporter (DAT) availability assessed through in vivo SPECT neuroimaging. At the behavioral level, Fmr1Δexon 8 rats displayed hyperactivity in the open field test in the absence of repetitive behaviors in the hole board test. However, these behavioral alterations were not associated with changes in striatal DAT availability as assessed by non-invasive in vivo SPECT and Western blot analyses

    Defining theHelicobacter pyloriDisease-Specific Antigenic Repertoire

    No full text
    The analysis of the interaction betweenHelicobacter pylori(HP) and the hostin vivois an extremely informative way to enlighten the molecular mechanisms behind the persistency/latency of the bacterium as well as in the progression of the infection. An important source of information is represented by circulating antibodies targeting the bacteria that define a specific "disease signature" with prospective diagnostic implications. The diagnosis of some of the HP induced diseases such as gastric cancer (GC), MALT lymphoma (MALT), and autoimmune gastritis (AIG) is not easy because patients do not show symptoms of illness in early-onset stages, at the same time they progress rapidly. The possibility of identifying markers able to provide an early diagnosis would be extremely beneficial since a late diagnosis results in a delay in undergoing active therapy and reduces the survival rate of patients. With the aim to identify the HP antigens recognized during the host immune-response to the infection and possibly disease progression, we applied a discovery-driven approach, that combines "phage display" and deep sequencing. The procedure is based on the selection of ORF phage libraries, specifically generated from the pathogen's genome, with sera antibodies from patients with different HP-related diseases. To this end two phage display libraries have been constructed starting from genomic DNA from the reference HP 26695 and the pathogenic HP B128 strains; libraries were filtered for ORFs by using an ORF selection vector developed by our group (Di Niro et al., 2005;Soluri et al., 2018), selected with antibodies from patients affected by GC, MALT, and AIG and putative HP antigens/epitopes were identified after Sequencing and ranking. The results show that individual selection significantly reduced the library diversity and comparison of individual ranks for each condition allowed us to highlight a pattern of putative antigens specific for the different pathological outcomes or common for all of them. Within the putative antigens enriched after selection, we have validated protein CagY/Cag7 by ELISA assay as a marker of HP infection and progression. Overall, we have defined HP antigenic repertoire and identified a panel of putative specific antigens/epitopes for three different HP infection pathological outcomes that could be validated in the next future

    High resolution mini-gammacamera and 99mTc [HMPAO] - leukocytes for diagnosis of infection and radioguided surgery in diabetic foot

    Get PDF
    Discovery of osteitis may be delayed because of late appearance of X-ray signs in patients with diabetic foot. Scintigraphy with labelled leukocytes is able to detect flogosis but often misses bone involvement, due to inadequate resolution of Anger camera, the commonest detector used in nuclear medicine. Radioguided surgery and biopsy with high resolution scintigraphy (HRS) started to be studied since 2000: although this method had never been tested for planning and guiding diabetic foot surgery, in our opinion it can help early diagnosis and surgical treatment of diabetic foot. Five patients with diabetic foot and suspected infection were studied with standard 99mTc [HMPAO]-leukocyte scan. In the same patients 2 mm spatial resolution HRS was performed 24 hours after administration of labelled WBC, using our inch2 field-of-view portable mini-gammacamera. Operations were done just after the 24h scan and were guided with the portable high resolution device in the four patients who showed positive scan. Scintigraphy with Anger camera and HRS were positive in four patients. HRS showed a bar-shaped radioactivity corresponding to small phalanges, close to the main inter-digital hot spot. The presence of osteitis on phalanges that had been shown by HRS was confirmed at surgery, that was successfully driven with the high resolution mini-camera. In conclusion HRS is able to diagnose early osteitis of diabetic foot and to guide diabetic foot surgery
    • 

    corecore