266 research outputs found
Adaptive application deployment of priority services in virtual environments
This paper introduces an adaptive application deployment service for virtualized environments (named DECIDE). This service facilitates the definition of customized cluster/cloud environment and the adaptive integration of scheduling policies for testing and deploying containerized applications. The service-based design of DECIDE and the use of a virtualized environment makes it possible to easily change the cluster/cloud configuration and its scheduling policy. It provides a differentiated service for application deployment based on priorities, according to user requirements. A prototype of this service was implemented using Apache MESOS and Docker. As a proof of concept, a federated application for electronic identification (eIDAS) was deployed using the DECIDE approach, which allows users to evaluate different deployment scenarios and scheduling policies providing useful information for decision making. Experiments were carried out to validate service functionality and the feasibility for testing and deploying applications that require different scheduling policies.This work was partially funded by the Spanish Ministry of Economy, Industry and Competitiveness under the grant TIN2016-79637-P “Towards Unification of HPC and Big Data Paradigms”
A novel epilepsy mutation in the sodium channel SCN1A identifies a cytoplasmic domain for {beta} subunit interaction
A mutation in the sodium channel SCN1A was identified in a small Italian family with dominantly inherited generalized epilepsy with febrile seizures plus (GEFS+). The mutation, D1866Y, alters an evolutionarily conserved aspartate residue in the C-terminal cytoplasmic domain of the sodium channel {alpha} subunit. The mutation decreased modulation of the {alpha} subunit by {beta}1, which normally causes a negative shift in the voltage dependence of inactivation in oocytes. There was less of a shift with the mutant channel, resulting in a 10 mV difference between the wild-type and mutant channels in the presence of {beta}1. This shift increased the magnitude of the window current, which resulted in more persistent current during a voltage ramp. Computational analysis suggests that neurons expressing the mutant channels will fire an action potential with a shorter onset delay in response to a threshold current injection, and that they will fire multiple action potentials with a shorter interspike interval at a higher input stimulus. These results suggest a causal relationship between a positive shift in the voltage dependence of sodium channel inactivation and spontaneous seizure activity. Direct interaction between the cytoplasmic C-terminal domain of the wild-type{alpha} subunit with the {beta}1or {beta}3 subunit was first demonstrated by yeast two-hybrid analysis. The SCN1A peptide K1846-R1886 is sufficient for {beta} subunit interaction. Coimmunoprecipitation from transfected mammalian cells confirmed the interaction between the C-terminal domains of the {alpha} and {beta}1 subunits. The D1866Y mutation weakens this interaction, demonstrating a novel molecular mechanism leading to seizure susceptibility
Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging
ObjectiveIn esophageal cancer, selective removal of involved lymph nodes could improve survival and limit complications from extended lymphadenectomy. Mapping with vital blue dyes or technetium Tc-99m often fails to identify intrathoracic sentinel lymph nodes. Our purpose was to develop an intraoperative method for identifying sentinel lymph nodes of the esophagus with high-sensitivity near-infrared fluorescence imaging.MethodsSix Yorkshire pigs underwent thoracotomy and received submucosal, esophageal injection of quantum dots, a novel near-infrared fluorescent lymph tracer designed for retention in sentinel lymph nodes. Six additional pigs underwent thoracotomy and received submucosal esophageal injection of CW800 conjugated to human serum albumin, another novel lymph tracer designed for uptake into distant lymph nodes. Finally, 6 pigs received submucosal injection of the fluorophore-conjugated albumin with an endoscopic needle through an esophagascope. These lymph tracers fluoresce in the near-infrared, permitting visualization of migration to sentinel lymph nodes with a custom intraoperative imaging system.ResultsInjection of the near-infrared fluorescent lymph tracers into the esophagus revealed communicating lymph nodes within 5 minutes of injection. In all 6 pigs that received quantum dot injection, only a single sentinel lymph node was identified. Among pigs that received fluorophore-conjugated albumin injection, in 5 of 12 a single sentinel lymph node was revealed, but in 7 of 12 two sentinel lymph nodes were identified. There was no dominant pattern in the appearance of the sentinel lymph nodes either cranial or caudal to the injection site.ConclusionNear-infrared fluorescence imaging of sentinel lymph nodes is a novel and reliable intraoperative technique with the power to assist with identification and resection of esophageal sentinel lymph nodes
The Role of Visual Information in Numerosity Estimation
Mainstream theory suggests that the approximate number system supports our non-symbolic number abilities (e.g. estimating or comparing different sets of items). It is argued that this system can extract number independently of the visual cues present in the stimulus (diameter, aggregate surface, etc.). However, in a recent report we argue that this might not be the case. We showed that participants combined information from different visual cues to derive their answers. While numerosity comparison requires a rough comparison of two sets of items (smaller versus larger), numerosity estimation requires a more precise mechanism. It could therefore be that numerosity estimation, in contrast to numerosity comparison, might rely on the approximate number system. To test this hypothesis, we conducted a numerosity estimation experiment. We controlled for the visual cues according to current standards: each single visual property was not informative about numerosity. Nevertheless, the results reveal that participants were influenced by the visual properties of the dot arrays. They gave a larger estimate when the dot arrays consisted of dots with, on average, a smaller diameter, aggregate surface or density but a larger convex hull. The reliance on visual cues to estimate numerosity suggests that the existence of an approximate number system that can extract numerosity independently of the visual cues is unlikely. Instead, we propose that humans estimate numerosity by weighing the different visual cues present in the stimuli
Evidence for the association of the SLC22A4 and SLC22A5 genes with Type 1 Diabetes: a case control study
BACKGROUND: Type 1 diabetes (T1D) is a chronic, autoimmune and multifactorial disease characterized by abnormal metabolism of carbohydrate and fat. Diminished carnitine plasma levels have been previously reported in T1D patients and carnitine increases the sensitivity of the cells to insulin. Polymorphisms in the carnitine transporters, encoded by the SLC22A4 and SLC22A5 genes, have been involved in susceptibility to two other autoimmune diseases, rheumatoid arthritis and Crohn's disease. For these reasons, we investigated for the first time the association with T1D of six single nucleotide polymorphisms (SNPs) mapping to these candidate genes: slc2F2, slc2F11, T306I, L503F, OCTN2-promoter and OCTN2-intron. METHODS: A case-control study was performed in the Spanish population with 295 T1D patients and 508 healthy control subjects. Maximum-likelihood haplotype frequencies were estimated by applying the Expectation-Maximization (EM) algorithm implemented by the Arlequin software. RESULTS: When independently analyzed, one of the tested polymorphisms in the SLC22A4 gene at 1672 showed significant association with T1D in our Spanish cohort. The overall comparison of the inferred haplotypes was significantly different between patients and controls (χ(2 )= 10.43; p = 0.034) with one of the haplotypes showing a protective effect for T1D (rs3792876/rs1050152/rs2631367/rs274559, CCGA: OR = 0.62 (0.41–0.93); p = 0.02). CONCLUSION: The haplotype distribution in the carnitine transporter locus seems to be significantly different between T1D patients and controls; however, additional studies in independent populations would allow to confirm the role of these genes in T1D risk
Gamma Power Is Phase-Locked to Posterior Alpha Activity
Neuronal oscillations in various frequency bands have been reported in numerous studies in both humans and animals. While it is obvious that these oscillations play an important role in cognitive processing, it remains unclear how oscillations in various frequency bands interact. In this study we have investigated phase to power locking in MEG activity of healthy human subjects at rest with their eyes closed. To examine cross-frequency coupling, we have computed coherence between the time course of the power in a given frequency band and the signal itself within every channel. The time-course of the power was calculated using a sliding tapered time window followed by a Fourier transform. Our findings show that high-frequency gamma power (30–70 Hz) is phase-locked to alpha oscillations (8–13 Hz) in the ongoing MEG signals. The topography of the coupling was similar to the topography of the alpha power and was strongest over occipital areas. Interestingly, gamma activity per se was not evident in the power spectra and only became detectable when studied in relation to the alpha phase. Intracranial data from an epileptic subject confirmed these findings albeit there was slowing in both the alpha and gamma band. A tentative explanation for this phenomenon is that the visual system is inhibited during most of the alpha cycle whereas a burst of gamma activity at a specific alpha phase (e.g. at troughs) reflects a window of excitability
Characteristic Metabolism of Free Amino Acids in Cetacean Plasma: Cluster Analysis and Comparison with Mice
From an evolutionary perspective, the ancestors of cetaceans first lived in terrestrial environments prior to adapting to aquatic environments. Whereas anatomical and morphological adaptations to aquatic environments have been well studied, few studies have focused on physiological changes. We focused on plasma amino acid concentrations (aminograms) since they show distinct patterns under various physiological conditions. Plasma and urine aminograms were obtained from bottlenose dolphins, pacific white-sided dolphins, Risso's dolphins, false-killer whales and C57BL/6J and ICR mice. Hierarchical cluster analyses were employed to uncover a multitude of amino acid relationships among different species, which can help us understand the complex interrelations comprising metabolic adaptations. The cetacean aminograms formed a cluster that was markedly distinguishable from the mouse cluster, indicating that cetaceans and terrestrial mammals have quite different metabolic machinery for amino acids. Levels of carnosine and 3-methylhistidine, both of which are antioxidants, were substantially higher in cetaceans. Urea was markedly elevated in cetaceans, whereas the level of urea cycle-related amino acids was lower. Because diving mammals must cope with high rates of reactive oxygen species generation due to alterations in apnea/reoxygenation and ischemia-reperfusion processes, high concentrations of antioxidative amino acids are advantageous. Moreover, shifting the set point of urea cycle may be an adaption used for body water conservation in the hyperosmotic sea water environment, because urea functions as a major blood osmolyte. Furthermore, since dolphins are kept in many aquariums for observation, the evaluation of these aminograms may provide useful diagnostic indices for the assessment of cetacean health in artificial environments in the future
- …