20 research outputs found

    Screening of Human Tumor Antigens for CD4+ T Cell Epitopes by Combination of HLA-Transgenic Mice, Recombinant Adenovirus and Antigen Peptide Libraries

    Get PDF
    BACKGROUND: As tumor antigen-specific CD4+ T cells can mediate strong therapeutic anti-tumor responses in melanoma patients we set out to establish a comprehensive screening strategy for the identification of tumor-specific CD4+ T cell epitopes suitable for detection, isolation and expansion of tumor-reactive T cells from patients. METHODS AND FINDINGS: To scan the human melanoma differentiation antigens TRP-1 and TRP-2 for HLA-DRB1*0301-restricted CD4+ T cell epitopes we applied the following methodology: Splenocytes of HLA-DRB1*0301-transgenic mice immunized with recombinant adenovirus encoding TRP-1 (Ad5.TRP-1) or TRP-2 (Ad5.TRP-2) were tested for their T cell reactivity against combinatorial TRP-1- and TRP-2-specific peptide libraries. CD4+ T cell epitopes thus identified were validated in the human system by stimulation of peripheral blood mononuclear cells (PBMC) from healthy donors and melanoma patients. Using this strategy we observed that recombinant Ad5 induced strong CD4+ T cell responses against the heterologous tumor antigens. In Ad5.TRP-2-immunized mice CD4+ T cell reactivity was detected against the known HLA-DRB1*0301-restricted TRP-2(60-74) epitope and against the new epitope TRP-2(149-163). Importantly, human T cells specifically recognizing target cells loaded with the TRP-2(149-163)-containing library peptide or infected with Ad5.TRP-2 were obtained from healthy individuals, and short term in vitro stimulation of PBMC revealed the presence of epitope-reactive CD4+ T cells in melanoma patients. Similarly, immunization of mice with Ad5.TRP-1 induced CD4+ T cell responses against TRP-1-derived peptides that turned out to be recognized also by human T cells, resulting in the identification of TRP-1(284-298) as a new HLA-DRB1*0301-restricted CD4+ T cell epitope. CONCLUSIONS: Our screening approach identified new HLA-DRB1*0301-restricted CD4+ T cell epitopes derived from melanoma antigens. This strategy is generally applicable to target antigens of other tumor entities and to different HLA class II molecules even without prior characterization of their peptide binding motives

    Organ- and Disease-Stage-Specific Regulation of Toxoplasma gondii-Specific CD8-T-Cell Responses by CD4 T Cells

    No full text
    Toxoplasma gondii induces a persistent central nervous system infection, which may be lethally reactivated in AIDS patients with low CD4 T-cell numbers. To analyze the role of CD4 T cells for the regulation of parasite-specific CD8 T cells, mice were infected with transgenic T. gondii expressing the CD8 T-cell antigen β-galactosidase (β-Gal). Depletion of CD4 T cells prior to infection did not affect frequencies of β-Gal(876-884)-specific (consisting of residues 876 to 884 of β-Gal) CD8 T cells but resulted in a pronounced reduction of intracerebral β-Gal-specific gamma interferon (IFN-γ)-producing and cytolytic CD8 T cells. After cessation of anti-CD4 treatment a normal T. gondii-specific CD4 T-cell response developed, but IFN-γ production of intracerebral β-Gal-specific CD8 T cells remained impaired. The important supportive role of CD4 T cells for the optimal functional activity of intracerebral CD8 T cells was also observed in mice that had been depleted of CD4 T cells during chronic toxoplasmosis. Reinfection of chronically infected mice that had been depleted of CD4 T cells during either the acute or chronic stage of infection resulted in an enhanced proliferation of β-Gal-specific IFN-γ-producing splenic CD8 T cells. However, reinfection of chronically infected mice that had been depleted of CD4 T cells in the acute stage of infection did not reverse the impaired IFN-γ production of intracerebral CD8 T cells. Collectively, these findings illustrate that CD4 T cells are not required for the induction and maintenance of parasite-specific CD8 T cells but, depending on the stage of infection, the infected organ and parasite challenge infection regulate the functional activity of intracerebral CD8 T cells

    An essential role for tumor necrosis factor in the formation of experimental murine Staphylococcus aureus-induced brain abscess and clearance

    No full text
    Tumor necrosis factor-alpha (TNF-alpha) is a central mediator of the immune response to pathogens, but may also exert neurotoxic effects, thereby contributing to immunopathology. To define the role of TNF during the course of brain abscess, TNF-deficient (TNF(0/0) mice were stereotaxically infected with Staphylococcus (S.) aureus-laden agarose beads. In comparison to 100% survival of wild type (WT) mice, TNF(0/0) mice displayed high mortality rates (54%) in the initial phase of abscess development as well as significantly increased morbidity in the course of the disease. The worse clinical outcome was due to an increased intracerebral (i.c.) bacterial load in TNF(0/0) mice as compared to WT mice. The impaired control of S. aureus was associated with reduced inductible nitric oxide synthase (iNOS) mRNA and protein expression in TNF(0/0)mice. Similarly, numbers of inflammatory leukocytes, cytokine expression of IL-6, IL-12p40, IFNgamma IL-beta mRNA, and brain edema were significantly increased in TNF(0/0)mice as compared to WT animals. In addition, resolution of i.c. infiltrates was delayed in TNF(0/0)mice correlating with reduced apoptosis of inflammatory leukocytes and formation of a fibrous abscess capsule. Collectively, these data demonstrate that TNF is of key importance for the control of S. aureus-induced brain abscess and regulates the ensuing host immune response
    corecore