76 research outputs found

    ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix

    Get PDF
    Breast epithelial cells differentiate into tubules when cultured in floating three-dimensional (3D) collagen gels, but not when the cells are cultured in the same collagen matrix that is attached to the culture dish. These observations suggest that the biophysical properties of collagenous matrices regulate epithelial differentiation, but the mechanism by which this occurs is unknown. Tubulogenesis required the contraction of floating collagen gels through Rho and ROCK-mediated contractility. ROCK-mediated contractility diminished Rho activity in a floating 3D collagen gel, and corresponded to a loss of FAK phosphorylated at Y397 localized to 3D matrix adhesions. Increasing the density of floating 3D collagen gels also disrupted tubulogenesis, promoted FAK phosphorylation, and sustained high Rho activity. These data demonstrate the novel finding that breast epithelial cells sense the rigidity or density of their environment via ROCK-mediated contractility and a subsequent down-regulation of Rho and FAK function, which is necessary for breast epithelial tubulogenesis to occur

    Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation

    Get PDF
    Substantial evidence supports a critical role for the activation of the Raf-1/MEK/mitogen-activated protein kinase pathway in oncogenic Ras-mediated transformation. For example, dominant negative mutants of Raf-1, MEK, and mitogen-activated protein kinase all inhibit Ras transformation. Furthermore, the observation that plasma membrane-localized Raf-1 exhibits the same transforming potency as oncogenic Ras suggests that Raf-1 activation alone is sufficient to mediate full Ras transforming activity. However, the recent identification of other candidate Ras effectors (e.g., RalGDS and phosphatidylinositol-3 kinase) suggests that activation of other downstream effector-mediated signaling pathways may also mediate Ras transforming activity. In support of this, two H-Ras effector domain mutants, H-Ras(12V, 37G) and H-Ras(12V, 40C), which are defective for Raf binding and activation, induced potent tumorigenic transformation of some strains of NIH 3T3 fibroblasts. These Raf-binding defective mutants of H-Ras induced a transformed morphology that was indistinguishable from that induced by activated members of Rho family proteins. Furthermore, the transforming activities of both of these mutants were synergistically enhanced by activated Raf-1 and inhibited by the dominant negative RhoA(19N) mutant, indicating that Ras may cause transformation that occurs via coordinate activation of Raf-dependent and -independent pathways that involves Rho family proteins. Finally, cotransfection of H-Ras(12V, 37G) and H-Ras(12V, 40C) resulted in synergistic cooperation of their focus-forming activities, indicating that Ras activates at least two Raf-independent, Ras effector-mediated signaling events

    The carboxyl-terminal CXXX sequence of Gi alpha, but not Rab5 or Rab11, supports Ras processing and transforming activity.

    Get PDF
    Although the heterotrimeric Gi alpha subunit terminates in an apparent CXXX prenylation signal (CGLF), it is not modified by isoprenylation. To determine if the Gi alpha CXXX sequence can signal prenylation when placed at the carboxyl termini of normally prenylated proteins, we have characterized the processing and biological activity of chimeric oncogenic Ras proteins that terminate in the Gi alpha CXXX sequence (Ras/Gi alpha). Surprisingly, these chimeras were prenylated both in vivo and in vitro, demonstrated significant membrane association, exhibited transforming activity, and induced transcriptional transactivation from Ras-responsive elements. We then extended these studies to determine if, unlike the CC or CXC carboxyl-terminal sequences of other Rab proteins, the carboxyl-terminal CXXX sequences of the Ras-related Rab5 and Rab11 proteins represent conventional CXXX prenylation signals that can support Ras processing and transforming activity. Unexpectedly, these Ras/Rab chimeras were nonprenylated, were cytosolic, and lacked detectable transforming or transcriptional transactivation activity. Taken together, these results suggest that the context within which a CXXX sequence occurs may also critically control the modification of a protein by prenylation, and that the Rab5 and Rab11 carboxyl termini do not possess conventional CXXX sequences. Instead, their CCXX and CCXXX motifs may represent additional classes of protein prenylation signals

    The Mitogen-activated Protein Kinase Phosphatases PAC1, MKP-1, and MKP-2 Have Unique Substrate Specificities and Reduced Activity in Vivo toward the ERK2 sevenmaker Mutation

    Get PDF
    Mitogen-activated protein (MAP) kinases can be grouped into three structural families, ERK, JNK, and p38, which are thought to carry out unique functions within cells. We demonstrate that ERK, JNK, and p38 are activated by distinct combinations of stimuli in T cells that simulate full or partial activation through the T cell receptor. These kinases are regulated by reversible phosphorylation on Tyr and Thr, and the dual specific phosphatases PAC1 and MKP-1 previously have been implicated in the in vivo inactivation of ERK or of ERK and JNK, respectively. Here we characterize a new MAP kinase phosphatase, MKP-2, that is induced in human peripheral blood T cells with phorbol 12-myristate 13-acetate and is expressed in a variety of nonhematopoietic tissues as well. We show that the in vivo substrate specificities of individual phosphatases are unique. PAC1, MKP-2, and MKP-1 recognize ERK and p38, ERK and JNK, and ERK, p38, and JNK, respectively. Thus, individual MAP kinase phosphatases can differentially regulate the potential for cross-talk between the various MAP kinase pathways. A hyperactive allele of ERK2 (D319N), analogous to the Drosophila sevenmaker gain-of-function mutation, has significantly reduced sensitivity to all three MAP kinase phosphatases in vivo

    Dbl and Vav mediate transformation via mitogen-activated protein kinase pathways that are distinct from those activated by oncogenic Ras.

    Get PDF
    Vav and Dbl are members of a novel class of oncogene proteins that share significant sequence identity in a approximately 250-amino-acid domain, designated the Dbl homology domain. Although Dbl functions as a guanine nucleotide exchange factor (GEF) and activator of Rho family proteins, recent evidence has demonstrated that Vav functions as a GEF for Ras proteins. Thus, transformation by Vav and Dbl may be a consequence of constitutive activation of Ras and Rho proteins, respectively. To address this possibility, we have compared the transforming activities of Vav and Dbl with that of the Ras GEF, GRF/CDC25. As expected, GRF-transformed cells exhibited the same reduction in actin stress fibers and focal adhesions as Ras-transformed cells. In contrast, Vav- and Dbl-transformed cells showed the same well-developed stress fibers and focal adhesions observed in normal or RhoA(63L)-transformed NIH 3T3 cells. Furthermore, neither Vav- or Dbl-transformed cells exhibited the elevated levels of Ras-GTP (60%) observed with GRF-transformed cells. Finally, GRF, but not Vav or Dbl, induced transcriptional activation from Ras-responsive DNA elements (ets/AP-1, fos promoter, and kappa B). However, like Ras- and GRF-transformed cells, both Vav- and Dbl-transformed cells exhibited constitutively activated mitogen-activated protein kinases (MAPKs) (primarily p42MAPK/ERK2). Since kinase-deficient forms of p42MAPK/ERK2 and p44MAPK/ERK1 inhibited Dbl transformation, MAPK activation may be an important component of its transforming activity. Taken together, our observations indicate that Vav and Dbl transformation is not a consequence of Ras activation and instead may involve the constitutive activation of MAPKs

    A Non-farnesylated Ha-Ras Protein Can Be Palmitoylated and Trigger Potent Differentiation and Transformation

    Get PDF
    Ha-Ras undergoes post-translational modifications (including attachment of farnesyl and palmitate) that culminate in localization of the protein to the plasma membrane. Because palmitate is not attached without prior farnesyl addition, the distinct contributions of the two lipid modifications to membrane attachment or biological activity have been difficult to examine. To test if palmitate is able to support these crucial functions on its own, novel C-terminal mutants of Ha-Ras were constructed, retaining the natural sites for palmitoylation, but replacing the C-terminal residue of the CAAX signal for prenylation with six lysines. Both the Ext61L and ExtWT proteins were modified in a dynamic fashion by palmitate, without being farnesylated; bound to membranes modestly (40% as well as native Ha-Ras); and retained appropriate GTP binding properties. Ext61L caused potent transformation of NIH 3T3 cells and, unexpectedly, an exaggerated differentiation of PC12 cells. Ext61L with the six lysines but lacking palmitates was inactive. Thus, farnesyl is not needed as a signal for palmitate attachment or removal, and a combination of transient palmitate modification and basic residues can support Ha-Ras membrane binding and two quite different biological functions. The roles of palmitate can therefore be independent of and distinct from those of farnesyl. Reciprocally, if membrane association can be sustained largely through palmitates, farnesyl is freed to interact with other proteins

    Modulation of HIV-1 Replication by a Novel RhoA Effector Activity

    Get PDF
    The RhoA GTPase is involved in regulating actin cytoskeletal organization, gene expression, cell proliferation, and survival. We report here that p115-RhoGEF, a specific guanine nucleotide exchange factor (GEF) and activator of RhoA, modulates HIV-1 replication. Ectopic expression of p115-RhoGEF or GΞ±13, which activates p115-RhoGEF activity, leads to inhibition of HIV-1 replication. RhoA activation is required and the inhibition affects HIV-1 gene expression. The RhoA effector activity in inhibiting HIV-1 replication is genetically separable from its activities in transformation of NIH3T3 cells, activation of serum response factor, and actin stress fiber formation. These findings reveal that the RhoA signal transduction pathway regulates HIV-1 replication and suggest that RhoA inhibits HIV-1 replication via a novel effector activity

    Citron Kinase, a RhoA Effector, Enhances HIV-1 Virion Production by Modulating Exocytosis

    Get PDF
    RhoGTPases play important roles in the regulation of protein transport and membrane recycling. Little is known, however, about how RhoGTPases affect HIV-1 virion production, which is dependent on the endosomal sorting pathway. We report that ectopic expression of citron kinase (citron-K), a RhoA effector, preferentially enhances HIV-1 virion production. Depletion of endogenous citron-K inhibits HIV-1 virion production. Citron-N, which lacks the kinase domain, also enhances HIV-1 virion production. The leucine zipper, Rho-binding and zinc finger domains of citron-N are necessary for the enhancement activity. Citron-K also enhances murine leukemia virion production and the HIV-1 late domain is not required for the citron-K-mediated enhancement. Ectopic expression of citron-K leads to the formation of cytoplasmic structures containing citron-K and HIV-1 Gag proteins. HIV-1 and citron-K cooperatively enhance acidic endosome and lysosome compartments. Finally, citron-K promotes exocytosis of microvesicles or exosomes that co-purify with HIV-1 virions. We conclude that citron-K enhances HIV-1 virion production by stimulating the endosomal compartments and exocytosis

    Requirement For C-terminal Sequences in Regulation of Ect2 Guanine Nucleotide Exchange Specificity and Transformation

    Get PDF
    Ect2 was identified originally as a transforming protein and a member of the Dbl family of Rho guanine nucleotide exchange factors (GEFs). Like all Dbl family proteins, Ect2 contains a tandem Dbl homology (DH) and pleckstrin homology (PH) domain structure. Previous studies demonstrated that N-terminal deletion of sequences upstream of the DH domain created a constitutively activated, transforming variant of Ect2 (designated DeltaN-Ect2 DH/PH/C), indicating that the N terminus served as a negative regulator of DH domain function in vivo. The role of sequences C-terminal to the DH domain has not been established. Therefore, we assessed the consequences of mutation of C-terminal sequences on Ect2-transforming activity. Surprisingly, in contrast to observations with other Dbl family proteins, we found that mutation of the invariant tryptophan residue in the PH domain did not impair DeltaN-Ect2 DH/PH/C transforming activity. Furthermore, although the sequences C-terminal to the PH domain lack any known functional domains or motifs, deletion of these sequences (DeltaN-Ect2 DH/PH) resulted in a dramatic reduction in transforming activity. Whereas DeltaN-Ect2 caused formation of lamellipodia, DeltaN-Ect2 DH/PH enhanced actin stress fiber formation, suggesting that C-terminal sequences influenced Ect2 Rho GTPase specificity. Consistent with this possibility, we determined that DeltaN-Ect2 DH/PH activated RhoA, but not Rac1 or Cdc42, whereas DeltaN-Ect2 DH/PH/C activated all three Rho GTPases in vivo. Taken together, these observations suggest that regions of Ect2 C-terminal to the DH domain alter the profile of Rho GTPases activated in vivo and consequently may contribute to the enhanced transforming activity of DeltaN-Ect2 DH/PH/C

    Oncogenic Neu/ErbB-2 Increases Ets, AP-1, and NF-B-dependent Gene Expression, and Inhibiting Ets Activation Blocks Neu-mediated Cellular Transformation

    Get PDF
    Overexpression of Neu (ErbB-2/HER2) is found in approximately 20% of breast tumors. Activation of Neu by a point mutation (NeuT) causes constitutive tyrosine kinase activity of this transmembrane receptor and transforming activity in fibroblasts. To identify downstream targets of Neu, we have analyzed the ability of Neu to activate gene expression. Expression of NeuT, but not normal Neu, caused transcriptional activation of Ets, AP-1, or NF-kappaB-dependent reporter genes. Dominant inhibitory Ras or Raf mutants blocked the Neu-mediated transcriptional activation, confirming that Ras signaling pathways were required for this activation. Analysis with Ets2 mutants indicated that activation of Ets2 transcriptional activity mediated by NeuT or oncogenic Ras required phosphorylation of the same Ets2 residue, threonine 72. Cotransfection of dominant inhibitory Ets2 mutants specifically blocked NeuT-mediated activation of Ets-dependent reporter genes. Furthermore, in focus formation assays using NIH 3T3 cells, the transforming activity of NeuT was inhibited 5-fold when NeuT was cotransfected with a dominant negative Ets2 mutant. However, parallel colony formation assays showed that the Ets2 dominant negative mutant did not inhibit the growth of normal cells. Together, these data show that NeuT activates a variety of transcription factor families via the Ras signaling pathway and that Ets activation is required for NeuT-mediated cellular transformation. Thus, downstream targets of Neu, including Ets transcription factors, may be useful points for therapeutic intervention in Neu/ErbB-2-associated cancers
    • …
    corecore