3,566 research outputs found

    Lattice Distortion and Magnetism of 3d-t2gt_{2g} Perovskite Oxides

    Full text link
    Several puzzling aspects of interplay of the experimental lattice distortion and the the magnetic properties of four narrow t2gt_{2g}-band perovskite oxides (YTiO3_3, LaTiO3_3, YVO3_3, and LaVO3_3) are clarified using results of first-principles electronic structure calculations. First, we derive parameters of the effective Hubbard-type Hamiltonian for the isolated t2gt_{2g} bands using newly developed downfolding method for the kinetic-energy part and a hybrid approach, based on the combination of the random-phase approximation and the constraint local-density approximation, for the screened Coulomb interaction part. Then, we solve the obtained Hamiltonian using a number of techniques, including the mean-field Hartree-Fock (HF) approximation, the second-order perturbation theory for the correlation energy, and a variational superexchange theory. Even though the crystal-field splitting is not particularly large to quench the orbital degrees of freedom, the crystal distortion imposes a severe constraint on the form of the possible orbital states, which favor the formation of the experimentally observed magnetic structures in YTiO3_3, YVO_, and LaVO3_3 even at the HF level. Beyond the HF approximation, the correlations effects systematically improve the agreement with the experimental data. Using the same type of approximations we could not reproduce the correct magnetic ground state of LaTiO3_3. However, we expect that the situation may change by systematically improving the level of approximations for dealing with the correlation effects.Comment: 30 pages, 17 figures, 8 tables, high-quality figures are available via e-mai

    Theoretical study of the accuracy limits for the optical resonance frequency measurements

    Full text link
    The principal limits for the accuracy of the resonance frequency measurements set by the asymmetry of the natural resonance line shape are studied and applied to the recent accurate frequency measurements in the two-photon 1s-2s resonance and in the one-photon 1s-2p resonance in hydrogen atom. This limit for 1s-2s resonance is found to be ∼10−5\sim 10^{-5} Hz compared to the accuracy achieved in experiment ±46\pm 46 Hz. In case of deuterium atom the limit is essentially larger: 10−210^{-2} Hz. For 1s-2p resonance the accuracy limit is 0.17 MHz while the uncertainty of the recent frequency measurement is about 6 MHz.Comment: to be published in Physical Review Letter

    Fingerprints of Spin-Orbital Physics in Crystalline O2_2

    Full text link
    The alkali hyperoxide KO2_2 is a molecular analog of strongly-correlated systems, comprising of orbitally degenerate magnetic O2−_2^- ions. Using first-principles electronic structure calculations, we set up an effective spin-orbital model for the low-energy \textit{molecular} orbitals and argue that many anomalous properties of KO2_2 replicate the status of its orbital system in various temperature regimes.Comment: 4 pages, 2 figures, 1 tabl

    Superexchange Interactions in Orthorhombically Distorted Titanates RTiO3 (R= Y, Gd, Sm, and La)

    Full text link
    Starting from the multiorbital Hubbard model for the t2g-bands of RTiO3 (R= Y, Gd, Sm, and La), where all parameters have been derived from the first-principles calculations, we construct an effective superexchange (SE) spin model, by treating transfer integrals as a perturbation. We consider four approximations for the SE interactions: (i) the canonical crystal-field (CF) theory, where the form of the the occupied t2g-orbitals is dictated by the CF splitting, and three extensions, namely (ii) the relativistic one, where occupied orbitals are confined within the lowest Kramers doublet obtained from the diagonalization of the crystal field and relativistic spin-orbit (SO) interactions; (iii) the finite-temperature extension, which consider the effect of thermal orbital fluctuations near the CF configuration; (iv) the many-electron extension, which is based on the diagonalization of the full Hamiltonian constructed in the basis of two-electron states separately for each bond of the system. The main results are summarized as follows. (i) Thermal fluctuations of the orbital degrees of freedom can substantially reduce the value of the magnetic transition temperature. (ii) The anisotropic and antisymmetric Dzyaloshinsky-Moriya interactions are rigorously derived and their implications to the magnetic properties are discussed. (iii) The CF theory, although applicable for YTiO3 and high-temperature structures of GdTiO3 and SmTiO3, breaks down in LaTiO3. Instead, the combination of the many-electron effects and SO interaction can be responsible for the AFM character of interatomic correlations in LaTiO3. (iv) The SE interactions in YTiO3 strongly depend on the details of the crystal structure. Distortions in the low-temperature structure tend to weaken the ferromagnetic interactions.Comment: 23 pages, 9 tables, 4 figure

    Ground State Properties and Optical Conductivity of the Transition Metal Oxide Sr2VO4{\rm Sr_{2}VO_{4}}

    Full text link
    Combining first-principles calculations with a technique for many-body problems, we investigate properties of the transition metal oxide Sr2VO4{\rm Sr_{2}VO_{4}} from the microscopic point of view. By using the local density approximation (LDA), the high-energy band structure is obtained, while screened Coulomb interactions are derived from the constrained LDA and the GW method. The renormalization of the kinetic energy is determined from the GW method. By these downfolding procedures, an effective Hamiltonian at low energies is derived. Applying the path integral renormalization group method to this Hamiltonian, we obtain ground state properties such as the magnetic and orbital orders. Obtained results are consistent with experiments within available data. We find that Sr2VO4{\rm Sr_{2}VO_{4}} is close to the metal-insulator transition. Furthermore, because of the coexistence and competition of ferromagnetic and antiferromgnetic exchange interactions in this system, an antiferromagnetic and orbital-ordered state with a nontrivial and large unit cell structure is predicted in the ground state. The calculated optical conductivity shows characteristic shoulder structure in agreement with the experimental results. This suggests an orbital selective reduction of the Mott gap.Comment: 38pages, 22figure

    Optimized Effective Potential for Extended Hubbard Model

    Full text link
    Antiferromagnetic and charge ordered Hartree-Fock solutions of the one-band Hubbard model with on-site and nearest-neighbor Coulomb repulsions are exactly mapped onto an auxiliary local Kohn-Sham (KS) problem within a density-functional theory. The mapping provides a new insight into the interpretation of the KS equations. (i) With an appropriate choice of the basic variable, there is a universal form of the KS potential, which is applicable both for the antiferromagnetic and the charge ordered solutions. (ii) The Kohn-Sham and Hartree-Fock eigenvalues are interconnected by a scaling transformation. (iii) The band-gap problem is attributed to the derivative discontinuity of the basic variable as the function of the electron number, rather than a finite discontinuity of the KS potential. (iv) It is argued that the conductivity gap and the energies of spin-wave excitations can be entirely defined by the parameters of the ground state and the KS eigenvalues.Comment: 21 page, 3 figure

    QED Calculation of E1M1 and E1E2 Transition Probabilities in One-Electron Ions with Arbitrary Nuclear Charge

    Full text link
    The quantum electrodynamical theory of the two-photon transitions in hydrogenlike ions is presented. The emission probability for 2s1/2 -> 2E1+1s1/2 transitions is calculated and compared to the results of the previous calculations. The emission probabilities 2p12 -> E1E2+1s1/2 and 2p1/2 -> E1M1+1s1/2 are also calculated for the nuclear charge Z values 1-100. This is the first calculation of the two latter probabilities. The results are given in two different gauges.Comment: 14 pages, 4 tables, 1 figur

    Extension of the sum rule for the transition rates between multiplets to the multiphoton case

    Full text link
    The sum rule for the transition rates between the components of two multiplets, known for the one-photon transitions, is extended to the multiphoton transitions in hydrogen and hydrogen-like ions. As an example the transitions 3p-2p, 4p-3p and 4d-3d are considered. The numerical results are compared with previous calculations.Comment: 10 pages, 4 table

    Asymmetry of the natural line profile for the hydrogen atom

    Get PDF
    The asymmetry of the natural line profile for transitions in hydrogen-like atoms is evaluated within a QED framework. For the Lyman-alpha 1s−2p1s-2p absorption transition in neutral hydrogen this asymmetry results in an additional energy shift of 2.929856 Hz. For the 2s1/2−2p3/22s_{1/2}-2p_{3/2} transition it amounts to -1.512674 Hz. As a new feature this correction turns out to be process dependent. The quoted numbers refer to the Compton-scattering process.Comment: RevTex, 7 Latex pages, 1 figur

    Novel miR390-Dependent Transacting siRNA Precursors in Plants Revealed by a PCR-Based Experimental Approach and Database Analysis

    Get PDF
    TAS loci in plant genomes encode transacting small interfering RNAs (ta-siRNAs) that regulate expression of a number of genes. The function of TAS3 precursor in Arabidopsis thaliana is controlled by two miR390 target sites flanking two ta-siARF sequences targeting mRNAs of ARF transcription factors. Cleavage of the 3′-miR390-site initiates ta-siRNAs biogenesis. Here we describe the new method for identification of plant ta-siRNA precursors based on PCR with oligodeoxyribonucleotide primers mimicking miR390. The method was found to be efficient for dicotiledonous plants, cycads, and mosses. Based on sequences of amplified loci and a database analysis, a novel type of miR390-dependent TAS sequences was identified in dicots. These TAS loci are characterized by a smaller distance between miR390 sites compared to TAS3, a single copy of ta-siARF, and a sequence conservation pattern pointing to the possibility that processing of novel TAS-like locus is initiated by cleavage of the 5′-terminal miR390 target site
    • …
    corecore